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Abstract

Firms hire researchers of unknown type in a competitive job market. Re-
searchers are able to signal their type via the choice of a costly experiment.
Unlike standard signaling scenarios, researchers face a problem of information
design rather than optimal effort. While the realized information of the experi-
ment is observable, the experimental process is not. We show that this can limit
the informativeness of the equilibrium research for pooling and fully-separating
equilibria: except in a special case of isodivergent experiments, there always
exists an equilibrium with observable experiments that is more informative.

1 Introduction

A number of specialized job markets determine job offers based upon the quality of
research produced by a prospective worker. For instance, a university hiring faculty
will examine an applicant’s portfolio of research in order to infer the potential contri-
bution of that applicant’s future research. Researchers entering such a job market will
attempt to assemble a portfolio that will signal their value. However, the firm making
the job offer may not be able to discriminate between experiments ex post when they
differ only in their counterfactual outcomes, forcing it to make an offer based on the
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experiment’s result, rather than its design. To what extent does signalling only via
observable evidence alter the informativeness of the research design?

This signaling problem is the focus of this paper. It has an important difference
from the classic signaling problem (Spence, 1973): Instead of a worker choosing an
effort level, she must choose an experiment. She must decide not only how much
information to gather, but also how to gather it. For instance, an investigative jour-
nalist conducting a survey must not only choose the number of hours to devote to
an investigation, but also which witnesses to question and what documents to seek.
The journalist may conclude her investigation immediately if she finds just a few
witnesses that reveal a scandal. However, this result would not reveal how she would
have continued the investigation if the witnesses had failed to provide relevant infor-
mation. Hence, a newspaper considering hiring the journalist cannot depend on the
counterfactual portion of her research.

Our analysis utilizes a model in which firms in a competitive labor market wish
to hire a researcher. The value to the firm of a researcher depends on her type,
which is drawn from a finite set and is private information. Prior to receiving a wage
offer, the researcher can conduct any experiment about an unknown state to signal
her type. These experiments are costly, and the marginal cost of a more informative
experiment (in the sense of Blackwell (1953)) depends on her type. A key assumption
in our model is that neither the researcher nor the firms are influenced directly by the
outcome of the experiment. When the experiment itself is observable, this reduces to
the standard job market signalling problem of Spence (1973), where experiment cost
is analogous to effort level.

However, signalling instead only via the outcome of the researcher’s experiment,
i.e. based on the posterior belief induced by the experiment, eliminates degrees of
freedom from the design of the wage contract. To see why, suppose that there are
two possible states of the world and consider an equilibrium in which a lower-cost
researcher’s experiment may either decrease the belief that the state of the world is
1 (rather than 0) to µ1 or increase it to µ2, and a higher-cost researcher’s experiment
has possible results µ′

1 and µ′
2. A wage function which specifies rewards for these four
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results pins down the expected payoff for the experiments being performed by the
two types of researchers. However, it also specifies the expected payoff for performing
an experiment which can shift beliefs to either µ1 or µ′

2, as well as for one which has
possible results µ′

1 or µ2.
Moreover, if an equilibrium is fully-separating so that each type is offered their

expected value to the firm, then when there are only two states it is impossible for
a researcher to choose an experiment with three or more outcomes. This is because
the researcher would receive the same payoff regardless of which outcome is realized,
and would prefer to choose an experiment that only includes the two least expensive
outcomes.

Theorem 1 show that these considerations restrict the set of experiments that
may be conducted in fully-separating or pooling equilibrium with observable out-
comes, compared to when experiments are observable. In particular, it is the most
informative experiments that cannot be supported by an equilibrium with observable
outcomes. This has implications for the externalities of the signaling game. Sig-
naling via outcomes rather than experiments may lead to less useful research being
contributed to society.

An important application is to the preregistration of research. Preregistration
involves specifying the hypotheses, methods, and analysis protocol in advance of con-
ducting a study. The primary aim of preregistration is to improve the validity of
statistical inference in confirmatory research by reducing problematic research prac-
tices such as p-hacking and post hoc analysis. However, preregistration also commits
the researcher to fully revealing the experiment. Our results imply that this expands
the set of possible equilibria to include more informative experiments.

The paper is organized as follows. Section 2 presents the signaling model, and
Section 3 demonstrates several examples of equilibria. We present our main results
in Section 4. Section 5 concludes.

Related Literature This paper builds on the classic signaling literature (Spence,
1973). The key difference is that instead of costly effort, costly experiments are used to
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signal type. Another strand of the signaling literature looks noisy signaling. de Haan
et al. (2011) looks at a Spence model with two types where the receiver observes
effort plus some normally distributed noise. This eliminates all pooling equilibria
except for the zero-effort one, since the receiver has to have reasonable beliefs about
all possible signal realizations. It also eliminates all but one separating equilibrium,
where the bad type chooses zero effort and the receiver chooses a cutoff strategy.
Heinsalu (2018) uses a similar model but with dynamics.

Also related is the literature on incentives in information design problems. Yoder
(2022) considers the problem of designing incentives for heterogeneous researchers.
In his model, principal contracts with a researcher with unknown costs to conduct
an experiment This model can be seen as a screening counterpart to our signaling
model, as the principal cares directly about the experiment.

Our model follows the literature on flexible costly information acquisition (Caplin
and Dean, 2013; Matějka and McKay, 2015) to model the cost of information. The
researcher can select any experiment at a cost that is proportional to the expected
reduction of entropy it induces.

2 Model

Firms in a competitive labor market wish to hire researchers. Heterogeneous re-
searchers choose costly experiments to signal their type. After completing their ex-
periments, researchers enter a job market. Conditional on the belief induced by the
outcome of an experiment, firms simultaneously make wage offers to the researcher.
Finally, the researcher decides whether to work for a firm, and if so which one. Neither
firms nor researchers care directly about the experiments.

Researchers There is finite state space Ω with |Ω| ≥ 2, and a common prior µ0 ∈
∆(Ω). The type of a researcher is drawn from the type space Θ = {θ1, . . . , θN} ⊂ R++

according to a full-support probability distribution f . We assume that θi < θj for
i < j. The type of a researcher is not observable by the firms, but researchers know
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their own type.
In order to signal their type, researchers can choose a finite experiment, i.e. a

set of signal labels and a conditional distribution over signals in each state. Due to
having a common prior, each signal can be identified with the posterior belief that
it induces. Hence, we will model experiments as unconditional distributions over
posterior beliefs that satisfy Bayes plausibility: the expectation of the posteriors µ is
equal to the prior. Thus the researcher may choose any experiment in the set

I(µ0) = {p ∈ ∆(∆(Ω)) : Ep[µ] = µ0}

The cost to a type θ researcher of running experiment p follows a posterior-separable
form:

C(p, θ) = θ (H(µ0)− Ep[H(µ)]) ,

where H : ∆(Ω) → R is continuously differentiable and strictly concave. The function
H is a measure of uncertainty about the state. For instance, H could be taken to be
Shannon entropy,

H(µ) = −
∑
ω∈Ω

µ(ω) ln(µ(ω)).

The cost of an experiment is then proportional to the expected reduction in uncer-
tainty.

Researchers are offered wages w : ∆(Ω) → R+ as a function of realized posteriors.
The ex ante expected payoff to a type θi researcher who chooses experiment p ∈ I(µ0)

is then

u(p, θi) = Ep[w(µ)]− C(p, θ).

Firms Firms do not directly care about the experiments performed by the re-
searcher. The value to a firm of hiring a type θi researcher is Vi = v − θik, where
v, k > 0 are interpreted as being derived from an experiment that the firm wishes
to run in some other context, for which the firm will pay the cost. Note that Vi is
decreasing in i. We will assume that VN > 0, and that for all i, Vi < VN + θiH(µ0).
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After observing the outcome of an experiment and forming posterior belief µ, the
firm forms a belief m(θi|µ) that the researcher is type θi. Firms compete in hiring,
and offer wages equal to the expected value of the researcher, so that

w(µ) =
∑
i

m(θi|µ)Vi.

Equilibrium The timing is then: (i) Researcher chooses experiment p, (ii) signals
are realized yielding posterior µ, and (iii) firms make offer w(µ). We will look at
pure-strategy perfect Bayesian equilibria.

An equilibrium with observable outcomes ({p∗i },m∗, w∗) consists of experiment
strategies p∗i ∈ I(µ0), beliefs m ∈ ∆(Θ×∆Ω), and wages w : ∆Ω → R+ such that:

1. For all p ∈ I(µ0) and i ∈ Θ,

u(p∗i , θi) ≥ u(p, θi). (IC)

2. For all µ ∈ ∆Ω satisfying p∗i (µ) > 0 for some i,

m(θi|µ) =
pi(µ)f(θi)∑
j pj(µ)f(θj)

.

3. For all µ ∈ ∆Ω,

w(µ) =
∑
i

m(θi|µ)Vi.

The first condition is incentive compatibility, requiring all types of researchers
choose an experiment that maximizes their expected payoff, given the wage function.
The second condition stipulates that firms form beliefs about the type of a researcher
using Bayes’ rule, whenever possible. The final condition is that the wage offers are
equal to the expected value of a researcher. This is a result of the firms engaging
in Bertrand competition. Define Eo to be the set of all equilibria with observable
outcomes.
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It is important to note that the second condition only pins down the beliefs of the
firms for outcomes that can result from some experiment chosen in the equilibrium.
If some posterior µ is not in the support of any experiment then m(·|µ) can not be
derived via Bayes’ rule. However, the firms’ beliefs at these off-path posteriors are
still important because they determine the wages that the researchers face when con-
sidering alternative strategies. The lowest wage that can be offered at any posterior
is VN , corresponding to firms assuming that a researcher is high-cost after observing
an off-equilibrium outcome.

The two simplest classes of equilibria are pooling equilibria and fully-separating
equilibria. In a pooling equilibrium every type of researcher chooses the same ex-
periment, so that p∗i = p∗j , for all i, j ∈ Θ. This in turn implies that every type of
researcher would be offered the same wage, equal to the expected value of a randomly
selected worker,

∑
i Vif(θi). In a fully-separating equilibrium no two researchers

choose experiments with overlapping supports, so that ∩i∈Θsupp(p∗i ) = Ø. Note that
this condition is stronger than merely requiring that no two researchers choose exactly
the same experiment: there can be no overlap in the distributions of posteriors. Hence
in a fully-separating equilibrium every realizable outcome is fully revealing, and so
the wage offered to a type θi researcher is Vi. We will use Eo

P and Eo
FS to denote the

sets of all pooing and fully-separating equilibria with observable outcomes.

Observable Experiments To understand how the market for researchers differs
from more traditional markets, it is useful to consider the case where firms can di-
rectly observe the experiments that are chosen by the researchers, rather than just
the outcomes of those experiments. As before, researchers choose Bayes plausible
experiments p ∈ I(µ0). But now firms form their beliefs about a researcher’s type as
a function of the experiment p itself.

An equilibrium with observable experiments consists of strategies p̂i ∈ I(µ0), beliefs
m̂ ∈ ∆(Θ× I(µ0)), and wages ŵ : I(µ0) → R+ such that
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1. For all p ∈ I(µ0) and i ∈ Θ,

ŵ(p̂i)− C(p̂i, θi) ≥ ŵ(p)− C(p, θi).

2. For all i ∈ Θ,
m̂(θi|p̂i) = f(θi)/

∑
j|p̂j=p̂i

f(θj).

3. For all p ∈ I(µ0),
ŵ(p) =

∑
i

m̂(θi|p)Vi.

The interpretation of these equilibrium conditions is the same as before. The sole
difference is that beliefs m̂ about researcher types are a function of experiments, not
posteriors. Since equilibria with observable experiments lack this stochastic element,
they are analogous to the standard signaling problem. Define Ee to be the set of all
equilibria with observable experiments.

Note that any set of researcher strategies in a pooling or fully-separating equi-
librium with only observable outcomes can also be supported in an equilibrium with
observable experiments via a straightforward transformation of the belief and wage
functions. In this sense, observability of the full experiments expands the set of
pooling and fully-separating equilibria.

3 Examples

To illustrate the structure of equilibria, we will take as an example the case where
there are two types of researchers and two states. Take as parameter values v = 3,
k = 0.25, θ1 = 1, θ2 = 3, f(θ1) = 0.85, and µ0 = 0.5. Hence the value of a type θ1

researcher is V1 = 2.75, and the value of a type θ2 researcher is V2 = 2.25. We will
take H to be Shannon entropy.
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We can frame a researcher’s incentive compatibility constraint as

p∗i ∈ argmax
p∈I(µ0)

Ep[w(µ) + θiH(µ)]. (1)

It is a widely established result (Aumann et al., 1995; Kamenica and Gentzkow,
2011) that the value of the objective function at a solution to this problem is the
value of the concavification of w(µ) + θiH(µ) at the prior µ0

1. Hence to graphically
illustrate equilibria, we can plot the function w(µ) + θiH(µ) for each i and consider
their concavifications.

3.1 Pooling

In any pooling equilibrium we must have that p∗1 = p∗2, and that w∗(µ) = f(θ1)V1 +

f(θ2)V2 for all µ ∈ supp(p∗i ). Figure 1 illustrates an equilibrium in which the experi-
ment has two outcomes in its support, µ1 = 0.35 and µ2 = 0.85, so that p∗i (µ1) = 0.3.
Regardless of which outcome is observed, the researcher is paid w(µ1) = w(µ2) =

2.675. Off-path beliefs are given by m∗(θ2|µ) = 1 for all µ /∈ supp(p∗i ), so that
w(µ) = V2 for all off-path beliefs.

The blue and red dots in Figure 1 show the values of the objective function (1).
Note that even though the value of this function is greater for the high-cost researcher,
the net payoff u(p∗1, θ1) will be greater for the low-cost researcher.

3.2 Fully-separating

In any fully-separating equilibrium we have that m∗(θ1|µ) = 1 for all µ ∈ supp(p∗1),
and m∗(θ2|µ) = 0 for all µ ∈ supp(p∗2). Type θ1 researchers are paid V1, and type
θ2 researchers are paid V2, regardless of the outcome of the experiment. Figure 2
illustrates a fully-separating equilibrium in which type θ1 chooses a binary experiment
p∗1 with posteriors µ1 = 0.15 and µ2 = 0.8. Regardless of which posterior is realized,
the type θ1 researcher gets a wage V1. The type θ2 researcher chooses an uninformative

1The concavification of a function f : X → R is the smallest concave function that lies weakly
above f .
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Figure 1: Pooling Equilibrium, Vf = f(θ1)V1 + f(θ2)V2

experiment with p∗2(µ0) = 1, getting paid a wage V2. Off-path beliefs are given by
m∗(θ2|µ) = 1 for all µ /∈ supp(p∗1), so that w(µ) = V2 for all off-path beliefs.

This demonstrates a general feature of fully-separating equilibria: the highest-cost
researcher will choose an uninformative experiment, whose support contains only the
prior µ0. This is because in a fully-separating equilibrium the type θ2 researcher
must be paid V2, while the firms can never offer a wage below V2 to incentivize
the researcher. In order to prevent the type θ2 researcher from deviating to p∗1, the
posteriors µ1 and µ2 must be far enough away from the prior so that the gray line
connecting the vertical red lines in Figure 2 passes below the red curve at the prior.
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Figure 2: Fully Separating Equilibrium

4 Analysis

4.1 Researcher’s Problem

We will first examine the researcher’s problem to determine the set of compatible
wage schedules. Given a wage schedule w, define the function

Mi,w(µ) = w(µ) + θiH(µ).

In equilibrium researcher i chooses an experiment such that

pi ∈ argmax
p∈I(µ0)

Ep[Mi,w(µ)]. (2)

The value of the maximization problem, when it exists, is the value of the concavifi-
cation of Mi,w(µ) at the prior µ0.
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(a) Li,w,p does not lie in hyperplane

(b) Hyperplane spanned by Li,w,p does not lie above graph of Mi,w

Figure 3: Profitable deviations when the conditions in Proposition 1 are not met
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For a given experiment p and wage schedule w, define

Li,w,p = {(µ,Mi,w(µ)|µ ∈ supp(p)}.

Now consider dividing the set of feasible experiments I(µ0) based on whether or not
their support is contained in that of p. The points of Li,w,p must lie in a hyperplane
in order to prevent deviations to experiments with supports contained in that of
p. In such deviations, the researcher could benefit by choosing a strict subset of
the posteriors in the support of p that span the hyperplane with the highest value
at the prior. This is illustrated in Figure 3a. Moreover, this hyperplane must lie
weakly above gr(Mi,w) in order to prevent deviations to experiments with supports
not contained in that of p. In such deviations, the researcher will substitute a posterior
µ outside the support of p such that (µ,Mi,w(µ)) is above the hyperplane. This is
illustrated in Figure 3b. More generally, we can derive the following result:

Proposition 1. A set of experiments {pi} is IC for a wage schedule w if and only if
for all i, Li,w,pi lies in a hyperplane weakly above gr(Mi,w).

Binary Case In the case of binary states and only two researchers, we can use
Proposition 1 to bound the size of the supports of the experiments. In an equilibrium,
the support of an experiment contains at most two non-overlapping posteriors and
two overlapping posteriors.

Proposition 2. Suppose that |Θ| = 2 and N = 2. In any equilibrium

|supp(p∗1) ∩ supp(p∗2)| ≤ 2

and for i ∈ {1, 2},
|supp(p∗i ) \ supp(p∗−i)| ≤ 2.
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Figure 4: Divergence measure for entropy.

4.2 Divergence

Given a prior belief µ0, define the divergence measure associated with H to be

D(µ∥µ0) ≡ H(µ0)−H(µ) +∇H(µ0) · (µ− µ0).

Geometrically, D(µ∥µ0) is the distance at µ between the graph of H, gr(H), and the
hyperplane tangent to gr(H) at µ0, as illustrated in Figure 4. We can rewrite the
cost of an experiment as the expected cost of obtaining the posteriors in the support
of the experiment,

C(p, θ) = θEp[D(µ∥µ0)].

Thus D(µ∥µ0) can be thought of as the cost of generating the posterior µ.
When each posterior in the support of the experiment has the same cost of being

generated, we will call the experiment isodivergent.

Definition 1. An experiment p ∈ I(µ0) is isodivergent if there exists a constant
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a ∈ R such that for all µ ∈ supp(p), D(µ∥µ0) = a.

We will show that it is non-isodivergence that limits the informativeness of equi-
libria with observable outcomes. A typical non-isodivergent experiment is one that
obtains near certainty with low probability and is relatively uninformative otherwise.
An example of this kind of experiment is a scientific researcher looking for a break-
through.

4.3 Informativeness

We can judge the informativeness of an equilibrium ({p∗i },m∗, w∗) based on the ag-
gregate experiment defined by

p∗(µ) =
∑
i

f(θi)p
∗
i (µ).

If the aggregate experiment of an equilibrium Blackwell dominates the aggregate
experiment of another equilibrium, we will say that the first equilibrium is more
informative. Define Ēo

FS ⊂ Eo
FS to be the set of fully-separating equilibria that are

maximally informative, i.e. their aggregate experiments are not strictly dominated
by the aggregate experiment of any other equilibrium in Eo

FS. Similarly define Ēo
P to

be the set of maximally informative pooling equilibria.
The equilibrium shown in Figure 2 is not maximally informative. We could

slightly lower µ1 and slightly raise µ2 in order to construct a more informative equi-
librium. This process could be continued until the line connecting (µ1,M1,w(µ1)) and
(µ2,M1,w(µ2)) is tangent to the curve V2 + θ1H(µ). To generalize this idea, define

Mi(µ) = VN + θiH(µ).

Proposition 3. Suppose ({p∗i },m∗, w∗) ∈ Ēo
FS. Then for all i, Li,w∗,p∗i

lies in a
hyperplane tangent to gr(Mi) at some µi ∈ ∆(Ω). The equilibrium payoff to researcher
i is VN + θiD(µ0∥µi).
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Figure 5: Two Equilibria in Ēo
FS, one isodivergent and one not

Proposition 4. Suppose ({p′i},m′, w′) ∈ Ēo
P . Then LN,w′,p′N

lies in a hyperplane
tangent to gr(MN) at some µ′ ∈ ∆Ω. The equilibrium payoff to researcher i is
VN + θiD(µ0∥µ′).

Our main result relates the informativeness of equilibria with observable outcomes
to those with observable experiments. The result implies that lack of observability of
the experiment can limit the informativeness of equilibrium research. Except in the
non-generic case of isodivergent experiments, there always exists an equilibrium with
observable experiments that is more informative.

Theorem 1. Take any ({p∗i },m∗, w∗) ∈ Ēo
FS(∈ Ēo

P ). There exists an equilibrium with
observable experiments ({p̂i}, m̂, ŵ) ∈ Ee

FS(∈ Ee
P ) that is strictly more informative

than ({p∗i },m∗, w∗) if and only if at least one experiment in {p∗i } is not isodivergent.

The idea for the proof is as follows. In a maximally informative equilibrium, the
hyperplane containing the points Li,w,pi will be tangent to the curve VN + θiH(µ).
If an experiment p∗i is isodivergent, then this point of tangency will be at µ0 and
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researcher i will have a net payoff of VN . This is illustrated in Figure 5 for researcher
1 by the experiment with posteriors at 0.2 and 0.8. Even with observable experiments
researcher i could never be incentivized to choose a more informative, and thus more
costly, experiment, because she always has the choice of choosing an uninformative
experiment and receiving at least VN .

If an experiment p∗i is not isodivergent, then the cost of pi will be less than Vi−VN ,
yielding a net payoff greater than VN . This is illustrated in Figure 5 for researcher 1 by
the experiment with posteriors at 0.08 and 0.65. We can then construct an otherwise
identical equilibrium with observable experiments in which researcher i chooses some
more informative experiment p̂i with cost Vi − VN .

5 Conclusion

This paper analyzes the signaling problem that arises in job markets for researchers.
We compare the case where the chosen experiment is observable to the case where only
the realized outcome of the experiment is observable. We show that this can limit the
informativeness of the equilibrium research conducted in pooling and fully-separating
equilibria: except in a special case of isodivergent experiments, there always exists
an equilibrium with observable experiments that is more informative.

Our analysis has focused on the case of pooling and fully-separating equilibria.
Future work should consider partially-separating equilibria, in which the wage offered
to researchers would differ depending on the outcome of the experiment.
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A Proofs

A.1 Proof of Proposition 1

Proof.
( =⇒ ) Suppose that a given set of experiments {pi} solves (2) for a wage schedule
w, and fix any i. Then pi solves

max
p∈I(µ0)

Ep[w(µ) + θiH(µ)].

If w(µ) + θiH(µ) is upper semi-continuous, then the result follows immediately from
e.g. Kamenica (2017). However, can make no continuity assumptions on w. So define
w′ : ∆Ω → R to be the upper envelope of w, i.e.

w′(µ) = lim sup
µn→µ

w(µn).

By construction, the function w′ is upper semi-continuous.
First, we will show that pi is also IC for w′. If not, then there exists some p′i such

that for some ε > 0,

Ep′i
[w′(µ) + θiH(µ)]− ε > Epi [w

′(µ) + θiH(µ)].

Since the objective function is linear, it is without loss to assume that p′i is an extreme
experiment, and thus has finite support. So for any δ > 0 we can take a set of
sequences µj

n → µj for every µj ∈ supp(p′i) such that limµj
n→µj w(µj

n) > w′(µj) − δ.
Since µ0 is in the interior of the convex hull of supp(p′i), for large enough n we have
that µ0 will also be in the interior of the convex hull of {µj

n}j. Hence the set of
experiments with a support of {µj

n}j will be non-empty. Moreover, since p′i is an
extreme point, for sufficiently large n there will be a unique experiment pn on {µj

n}j.
The sequence {pn}n converges in distribution to p′i. So for sufficiently small δ we have
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that

lim
pn→p′i

Epn [w(µ) + θiH(µ)] > Ep′i
[w′(µ) + θiH(µ)]− ε

> Epi [w
′(µ) + θiH(µ)]

> Epi [w(µ) + θiH(µ)].

This contradicts the fact that pi is optimal under w. Therefore, pi is also optimal for
w′.

Next, we will show that w(µ) = w′(µ) at every µ ∈ supp(pi). Suppose by way of
contradiction that for some µ ∈ supp(pi) we had that w′(µ) > w(µ). Now take an
extreme experiment p′i such that µ ∈ supp(p′i) ⊂ supp(pi). Due to the linearity of the
objective function, p′i will be optimal for w′. Then there exists some ε > 0 such that

Ep′i
[w′(µ) + θiH(µ)]− ε > Ep′i

[w(µ) + θiH(µ)].

As before, for any δ > 0 we can take a set of sequences µj
n → µj for every µj ∈ supp(p′i)

such that limµj
n→µj w(µj

n) > w′(µj)− δ, and take {pn}n with supp(pn) = {µj
n}j. The

sequence {pn}n converges in distribution to p′i. So for sufficiently small δ we have
that

lim
pn→p′i

Epn [w(µ) + θiH(µ)] > Ep′i
[w′(µ) + θiH(µ)]− ε.

This contradicts the fact that pi is optimal under w. Therefore, w(µ) = w′(µ) at
every µ ∈ supp(pi)

In Kamenica and Gentzkow (2011) it is shown that maxp∈I(µ0) Ep[w
′(µ)+ θiH(µ)]

exists, and that the support of any solution spans an affine subspace supported by
the surface of gr(Mi,w′). Hence in order for pi to be optimal under w′, the set Li,w′,pi

must span an affine subspace that is supported by gr(Mi,w′). And since w′(µ) = w(µ)

for all µ ∈ supp(pi), we have that Li,w,pi must span an affine subspace supported by
gr(Mi,w′). Define ℓ to be the associated linear function. It follows that for all µ ∈ ∆Ω

we have that ℓ(µ) ≥ Mi,w′(µ) ≥ Mi,w(µ). Therefore, Li,w,pi must lie in a hyperplane
weakly above gr(Mi,w).
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( ⇐= ) Now suppose that for a given set of experiments {pi} and wage schedule w,
Li,w,pi lies in a hyperplane weakly above gr(Mi,w) for all i. For a given i, the payoff to
any experiment is bounded above by the concavification of Mi,w(µ) at the prior µ0.
Since Li,w,pi lies in a hyperplane weakly above gr(Mi,w), its value at µ0 is above the
concavification of Mi,w(µ) at µ0, and hence above the value of any other experiment.
Therefore {pi} is IC for w.

A.2 Proof of Proposition 2

Proof. Let ({p∗i },m∗, w∗) be an equilibrium. Define A = supp(p∗1) ∩ supp(p∗2) and
Bi = supp(p∗i ) \ supp(p∗−i).

First we will show that |A| ≤ 2. Suppose that A were to have at least three distinct
posteriors, µ1 < µ2 < µ3. Then for some t ∈ (0, 1) we can write µ2 = tµ1 + (1− t)µ3.
Define hij = (µj, w

∗(µj) + θiH(µj)). By Proposition 1, for i ∈ {1, 2} the points hi1,
hi2, and hi3 must lie in a hyperplane. Thus hi2 can be written as a linear combination
of hi1 and hi3, so that h2 = th1 + (1− t)h3. It follows that for i ∈ {1, 2},

w∗(µ2) + θiH(µ2) = t(w∗(µ1) + θiH(µ1)) + (1− t)(w∗(µ3) + θiH(µ3)),

and so

tw(µ1) + (1− t)w(µ3)− w(µ2) = θiH(µ2)− tθiH(µ1)− (1− t)θiH(µ3).

Taking the right hand side of this equation for i ∈ {1, 2}, equating the expressions,
and rearranging yields

(θ1 − θ2)H(µ2) = (θ1 − θ2)tH(µ1) + (θ1 − θ2)(1− t)H(µ3).

Since µ2 = tµ1+(1−t)µ3, we now have that H(tµ1+(1−t)µ3) = tH(µ1)+(1−t)H(µ3).
This violates the convexity of H. Therefore, |A| ≤ 2.
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Next we will show that for any given i, |Bi| ≤ 2. Note that for all µ ∈ Bi we
have that w(µ) = Vi, since the realization of a posterior in Bi perfectly reveals the
researcher’s type. Suppose that Bi were to have at least three distinct posteriors,
µ1 < µ2 < µ3. Then for some t ∈ (0, 1) we can write µ2 = tµ1 + (1 − t)µ3. Write
hj = (µj, Vi + θiH(µj)). By Proposition 1, the points h1, h2, and h3 must lie in
a hyperplane. Thus h2 can be written as a linear combination of h1 and h3, i.e.
h2 = th1 + (1− t)h3. This implies that

Vi + θiH(µ2) = t(Vi + θiH(µ1)) + (1− t)(Vi + θiH(µ3)).

It follows that H(tµ1 + (1 − t)µ3) = tH(µ1) + (1 − t)H(µ3), contradicting the strict
convexity of H. Therefore, |Bi| ≤ 2.

A.3 Proof of Theorem 1

Proof. In a maximally informative equilibrium, the hyperplane containing the points
Li,w,pi will be tangent to the curve VN + θiH(µ). If an experiment p∗i is isodivergent,
then this point of tangency will be at µ0 and researcher i will have a net payoff of VN .
Even with observable experiments researcher i could never be incentivized to choose
a more informative, and thus more costly, experiment, because she always has the
choice of choosing an uninformative experiment and receiving at least VN .

If an experiment p∗i is not isodivergent, then the cost of pi will be less than Vi−VN ,
yielding a net payoff greater than VN . We can then construct an otherwise identical
equilibrium with observable experiments in which researcher i chooses some more
informative experiment p̂i with cost Vi − VN .
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