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Abstract

We present a theory of information costs that explores the notion of economies
and diseconomies of scale in information acquisition. We formulate a cost func-
tion that generalizes the constant marginal cost function in Pomatto et al.
(2023). We demonstrate how to apply our cost function to decision problems.
While economies of scale will push a decision maker toward a balanced learn-
ing strategy, diseconomies of scale will encourage a decision maker to focus her
attention on a limited number of states.
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1 Introduction

A central theme in economic theory is that information is scarce. A comprehensive

understanding of how this scarcity impacts decision making requires endogenizing the

choice of information structure. It is important, then, to formulate reasonable cost
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functions for information structures. For conventional commodities, cost functions

are commonly characterized by whether or not they exhibit economies of scale. In

this paper, we present a tractable reduced form cost function that can be used to

model diseconomies of scale.

Recent progress in this direction has been made by Pomatto et al. (2023) who

present an axiomatic theory of information acquisition with constant marginal costs.

Their axioms determine the cost of an experiment up to a vector of parameters,

characterized by a log-likelihood ratio (LLR) cost function. An important feature of

their axioms is the assumption of constant marginal costs: costs are additive with

respect to experiments that are independent conditional on the state. This implies,

for instance, that if the variable is the potency of a drug, and information is gathered

by testing the drug on volunteers, then the cost of recruiting an additional volunteer

is constant. However, if the drug is being used to treat a particularly rare disease,

then doubling the number of participants may well more than double the costs.

The question then arises of how best to capture the notion of nonconstant marginal

costs in an information acquisition setting. A standard approach to studying cost

functions for traditional goods is to classify them in terms of constant, increasing,

or decreasing marginal costs. Hence a natural direction is to consider cost functions

that are super-additive or sub-additive with respect to the number of independent

experiments. We generalize the axiom of constant marginal cost in Pomatto et al.

(2023) and arrive at a specific functional form for information costs that includes the

LLR cost function as a special case.

When modeling the cost of information, an important question is whether we are

considering the cost of acquiring a belief, or the cost of performing an experiment.

For instance, following the influential work of Sims (2003) on rational inattention,

cost functions based on mutual information have been widely applied. Under this

approach, the cost of an experiment is given by the expected change in the Shan-

non entropy between prior belief and posterior belief. In contrast, we follow the
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experiment-based approach of Denti et al. (2022) and consider experimental cost

functions, in which the cost depends solely on the experiment performed.

Our main result characterizes all cost functions over Blackwell experiments that

satisfy three main conditions. Let π and ρ be two conditionally independent and

identically distributed Blackwell experiments. First, the cost C(π) of π is greater

than the cost C(ρ) of ρ if π is more informative than ρ in the sense of Blackwell

(1951). Second, the cost of performing π with probability β and otherwise performing

ρ is equal to βC(π) + (1 − β)C(ρ). Third, the cost of performing both experiments

is equal to C(π) + C(ρ) + λC(π)C(ρ) for some λ ∈ R. This third axiom allows us to

consider nonconstant marginal costs. When λ = 0, costs are additive and we arrive

at the same LLR cost function from Pomatto et al. (2023). But when λ > 0 costs

are super-additive, and when λ < 0 costs are sub-additive. This pseudo-additivity

property already exists in the literature on information theory. For instance, Tsallis

entropy, a generalization of Shannon entropy, satisfies this property (Tsallis, 1988).

The parameters of the cost function permit a straightforward interpretation that

is amenable to applications. Given a finite state space Θ, there is one parameter for

each state, αi ∈ R, and a scaling parameter, λ. The parameter αi corresponds to the

difficulty of learning about state i; higher values reflect lower complexity.

An implication of our model is that diseconomies of scale can lead to unbalanced

decision making between states. As an illustration, consider a pharmaceutical firm

performing a clinical trial of a new drug. If the drug is effective the firm wishes to

begin manufacturing it, but if it is ineffective then they will abandon the project. In

the face of increasing marginal costs for recruiting new test subjects, it may be quite

cheap to perform a small-scale trial but prohibitively expensive to perform a large-

scale trial. Such experiments tend to have low statistical power, a high probability

of a Type II error (false negative), and a low probability of a Type I error (false

positive). There will then be a low chance of taking the correct action in the state of

the world where the drug truly is effective, and a relatively high chance of taking the
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correct action when the drug is not effective.

If, on the other hand, the cost of recruiting subjects exhibits constant returns to

scale, then the best experiment would be one which strikes a balance between the

likelihood of a Type I error and a Type II error. The probability of taking the correct

action will be balanced between the two states.

The cost function we present is not the only way to approach modeling disec-

onomies of scale in information acquisition. However, its relatively simple form and

parameterization make it serve as a useful benchmark for this topic. For instance, we

show that this cost function has a posterior-separable representation (Denti, 2022).

In Section 2 we introduce the basic model of information costs. Our main results

are presented in Section 3. Section 4 provides applications of our framework to

decision problems. Section 5 discusses the relationship of our results to the literature

on rational inattention. Section 6 concludes.

Related Literature Caplin et al. (2022) provide an axiomatic foundation for repre-

senting information acquisition costs via a posterior-separable function. Additionally,

Denti (2022) provides testable conditions for posterior separability of cost functions.

The cost functions characterized in our main result would have a posterior-separable

representation if equipped with a full-support prior. However, our cost functions

do not have what is termed a uniform posterior-separable representation. In gen-

eral, a uniform posterior-separable cost function cannot be represented as a prior-

independent experiment cost function. Hébert and Woodford (2017) and Bloedel and

Zhong (2020) show that many of the reduced form uniformly posterior-separable cost

functions can be conceived of as resulting from a process of continuous experimenta-

tion and optimal stopping.

Morris and Strack (2019) consider the sampling problem of Wald (1945) and

derive a cost function that exhibits constant marginal costs. They also discuss the

issue of economies/diseconomies of scale in information acquisition, pointing out that
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entropy costs have economies of scale. We contribute by providing a cost function

that exhibits such diseconomies of scale.

Mensch (2018) provides an axiomatic representation of information acquisition

using Blackwell experiments as the primitive. Unlike Pomatto et al. (2023) who focus

solely on cost functions that have constant marginal costs, Mensch (2018) provides

an axiomatic framework that covers all posterior-separable cost functions. His main

result characterizes cost functions that are additively separable over signals, and is

the same as our Proposition 1. This result also comes from the statistics literature,

e.g. Torgersen (1991).

This project is related to the rational inattention literature (Sims, 2003; Matějka

and McKay, 2015), which also considers information frictions. However, in rational

inattention models, the cost of new information is generally given by the expected

reduction in entropy between the prior and the posterior beliefs of a decision maker.

In such a cost function, the cost of an experiment is dependent on a prior belief.

In contrast, we examine cost functions over Blackwell experiments which make no

reference to a prior. Note, however, that if one is running a subsequent experiment

contingent on some realization s of a first experiment, then the resulting implicit cost

may depend on the prior, since the probability that s is realized may depend on the

prior.

Finally, the Bayesian persuasion literature (Kamenica and Gentzkow, 2011) con-

siders a sender who commits to an arbitrary experiment in order to influence a re-

ceiver. Gentzkow and Kamenica (2014) extends this model to the case where experi-

ments are costly. Their model of costly information fits into our present framework.
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2 Model

2.1 Experiments

There is a finite state space Θ of size N . An experiment is a pair (M,π), where M ∈ N

denotes the size of a signal space, and π : Θ → ∆({1, . . . ,M}) gives the conditional

probabilities of the possible signal realizations. Let Π be the class of all experiments.

We will use ΠM to denote the class of all experiments with a signal space of size M .

Hence for i ∈ {1, . . . , N} and (M,π) ∈ Π we have that π(i) ∈ ∆({1, . . . ,M}). We will

use subscripts to index signals, so that πs(i) = Pr{s|i} and πs = (πs(1), . . . , πs(N)) ∈

[0, 1]N . When the size of the signal space is clear from context, we will sometimes

simply refer to π as an experiment.

For example, suppose we have an experiment in which a biased coin is flipped.

The coin is known to be 40-60 biased, but it is not known which face is favored. Call

the state in which heads is favored H, and the state in which tails is favored T . An

experiment in which the coin is flipped has two possible signal realizations, t and h.

This experiment is represented as

πh(H) = 0.6, πt(H) = 0.4

πh(T ) = 0.4, πt(T ) = 0.6.
(2.1)

We now introduce some key definitions.

Definition 1. Given β ∈ (0, 1) and experiments π ∈ ΠM and ρ ∈ ΠL, the mixed

experiment τ = βπ ⊕ (1− β)ρ ∈ ΠM+L is defined via

τi = βπi, for i = 1, . . . ,M,

τi = (1− β)ρi−M , for i = M + 1, . . . ,M + L.

Hence when mixing two experiments, we conduct only one of the experiments,

chosen randomly.
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Definition 2. Given experiments π ∈ ΠM and ρ ∈ ΠL, the joint experiment τ =

π ⊗ ρ ∈ ΠML is defined via

τs+M(t−1) = πsρt,

for all s ∈ {1, . . . ,M} and t ∈ {1, . . . , L}.

When joining two experiments, we conduct both experiments and see both signal

realizations.

Definition 3. Let π and ρ be two experiments, and µ0 a uniform prior over Θ. Let

⟨π|µ0⟩ and ⟨ρ|µ0⟩ be the distributions over posterior beliefs induced by π and ρ given

µ0. Then π dominates ρ in the Blackwell order if

∫
µ∈∆(Θ)

g(µ)d⟨π|µ⟩(µ) ≥
∫
µ∈∆(Θ)

g(µ)d⟨ρ|µ0⟩(µ)

for every convex1 function g : ∆(Θ) → R. Two experiments π and ρ are Blackwell

equivalent if π dominates ρ in the Blackwell order and ρ dominates π in the Blackwell

order.

The Blackwell ordering is commonly used to rank experiments based on their

informational content.

2.2 Cost Functions

A cost function C : Π → R+ assigns a (nonnegative) cost to each experiment in Π.

The first two axioms that we will use to characterize cost functions are Blackwell

monotonicity and linearity.
1A function c is convex if for all β ∈ (0, 1) and for all x1, x2 ∈ (0, 1)N

c(βx1 + (1− β)x2) ≤ βc(x1) + (1− β)c(x2).

7



Definition 4. A cost function C is Blackwell monotonic if for all experiments π, ρ ∈

Π, if π dominates ρ in the Blackwell order then C(π) ≥ C(ρ).

Blackwell monotonicity captures the notion that more informative experiments are

more costly. Additionally, it implies that information costs should not be sensitive

to how signal realizations are labelled. Note that if a cost function is Blackwell

monotonic then it will assign the same cost to Blackwell equivalent experiments.

Definition 5. A cost function C is linear if for all β ∈ (0, 1) and experiments π ∈ ΠM

and ρ ∈ ΠL,

C(βπ ⊕ (1− β)ρ) = βC(π) + (1− β)C(ρ).

Thus linearity requires that a cost function is linear in the mixing operation.

Definition 6. A cost function C is continuous if for any (M,π) and any sequence of

experiments (M,π1), (M,π2), (M,π3), . . . such that πn
s (i) −→ πs(i) for all i and s, we

have C(πn) −→ C(π).

Under a continuous cost function, if two experiments have similar conditional

distributions of signals then they have similar costs. Note that in this definition we

are only considering point-wise convergence of experiments whose signal spaces are

the same size.

2.3 Separability

Cost functions that are linear and Blackwell monotonic have a very convenient ad-

ditively separable form, and can be characterized by a generating function c. The

following proposition is a known result (Mensch, 2018; Torgersen, 1991), but is in-

cluded here as this representation is key to our main result.

Proposition 1. A cost function C is Blackwell monotonic, linear, and continuous,

if and only if there exists a convex, homogeneous of degree one, 2 and continuous
2A function c is homogeneous of degree one if for all x1, . . . , xN ∈ (0, 1) and β ∈ (0,mini{1/xi})

we have βc(x) = c(βx).
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function c : (0, 1)N → R such that for all (M,π) ∈ Π,

C(π) =
M∑
s=1

c(πs). (2.2)

A proof is given in Appendix A. The homogeneity of c relates directly to the lin-

earity of the cost function, and the convexity of c is connected to the monotonicity of

the cost function. To understand the intuition, consider comparing the two experi-

ments of flipping a biased coin once, and flipping it twice. Each of the possible signal

realizations in the latter experiment has a lower probability than any signal in the

former experiment. Hence the convexity of c guarantees that it is more costly to flip

the coin twice.

3 Main Results

3.1 Economies of Scale

Given some λ ∈ R, we are interested in cost functions that satisfy

C(π ⊗ ρ) = C(π) + C(ρ) + λC(π)C(ρ) (3.1)

for all experiments π and ρ, with λ ̸= 0.

This third condition allows us to capture either economies or diseconomies of scale.

When λ > 0 costs are super-additive, and when λ < 0 costs are sub-additive. This

pseudo-additivity property already exists in the literature on information theory. For

instance, Tsallis entropy, a generalization of Shannon entropy, satisfies this property

(Tsallis, 1988).

Theorem 1. A cost function C is monotonic, linear, continuous, nonconstant, and

satisfies

C(π ⊗ ρ) = C(π) + C(ρ) + λC(π)C(ρ) (3.2)
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for some λ ̸= 0 and all π, ρ ∈ Π if and only if for all π ∈ Π,

C(π) =
1

λ

(
M∑
s=1

N∏
i=1

πs(i)
αi − 1

)
, (3.3)

where α1, . . . , αN ∈ R are parameters satisfying
∑N

i=1 αi = 1 such that

c(x) =
1

λ

(
N∏
i=1

x(i)αi − 1

N

N∑
i=1

x(i)

)
. (3.4)

is convex.

The proof is given in Appendix B.1. The proof uses Proposition 1 to reduce

the problem to finding a generating function c. By defining f : (0, 1)N → R via

f(x) = λc(x) + 1
N

∑N
i=1 x(i), the condition in (3.2) reduces to

M∑
s=1

L∑
t=1

f(πsρt) =
M∑
s=1

L∑
t=1

f(πs)f(ρt).

Solving this functional equation gives us (3.3). Note that the −1 term in (3.3) is

there to normalize the cost of an uninformative experiment to 0.

If a function is twice continuously differentiable, then its convexity can be verified

by examining its (symmetric) Hessian matrix. At each x ∈ (0, 1)N , c is convex iff

its Hessian matrix H is positive semi-definite, written as H ≥ 0. We calculate the

entries of the Hessian to be

Hij =
αiαj

λx(i)x(j)

N∏
k=1

x(k)αk , i ̸= j,

Hii =
αi(αi − 1)

λx(i)2

N∏
k=1

x(k)αk , i = 1, . . . , N.

The matrix D := diag(x(1), . . . , x(N)) is positive definite (D > 0), so H ≥ 0 (and c
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is convex) iff the matrix

Ĥ := DHD

=
1

λ


α1(α1 − 1) α1α2 · · · α1αN

α2α1 α2(α2 − 1) · · · α2αN

... ... ...

αNα1 αNα2 · · · αN(αN − 1)


is positive semi-definite.

For an example of how the requirement Ĥ ≥ 0 constrains α, consider the case

N = 2. Then Ĥ is 2× 2, so Ĥ ≥ 0 iff Ĥ1,1 ≥ 0 and det(Ĥ) ≥ 0. We also require that

α1 + α2 = 1, and so

det(Ĥ) =
1

λ2
(α1(α1 − 1)α2(α2 − 1)− α2

1α
2
2) = 0.

In other words, the non-negative determinant condition is always satisfied. It remains

to consider the conditions under which Ĥ1,1 ≥ 0. If λ > 0, then Ĥ1,1 =
1
λ
α1(α1−1) ≥

0 iff α1 ≤ 0 or α1 ≥ 1 (and hence α2 ≥ 1 or α2 ≤ 0 respectively). If λ < 0, then

Ĥ1,1 ≥ 0 iff 0 ≤ α1 ≤ 1 (and hence 0 ≤ α2 < 1).

Each αi can be interpreted parameterizing the cost of learning about state i. The

lower αi, the more costly it is to learn about state i. The parameter λ is a scaling

parameter that affects the overall cost of information. These interpretations will be

explored in more detail in Section 4.

The cost function in (3.3) is closely related to the Hellinger transform (Torgersen,

1991). The Hellinger transform of an experiment π is a mapping Hπ : ∆(Θ) → [0, 1]

given by Hπ(α) =
∑M

s=1

∏N
i=1 πs(i)

αi . This mapping is monotonically decreasing in the

statistical information of π. The primary difference between (3.3) and the Hellinger

transform is that in (3.3) the parameters αi are not restricted to be positive, and the

parameter λ allows for scaling. This allows (3.3) to be monotonically increasing in
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the Blackwell order, and exhibit economies or diseconomies of scale depending on the

parameter choices.

3.2 Relationship to Pomatto et al. (2023)

Pomatto et al. (2023) consider three main axioms for cost functions. First, C assigns

the same cost to Blackwell equivalent experiments. Second, C satisfies C(π ⊗ ρ) =

C(π) + C(ρ) for all π, ρ ∈ Π. Note that these first two axioms in turn imply that

the cost function C is Blackwell monotonic. Third, they posit that the cost of an

experiment is linear in the probability that the experiment will generate information.

That is, if π0 is an uninformative experiment, then for every π and β ∈ [0, 1],

C(βπ ⊕ (1− β)π0) = βC(π).

This third axiom is weaker than our linearity assumption; their third axiom only

requires linearity to hold when one of the experiments is uninformative. While this

means that Theorem 2 below is immediate from their paper, we include it as a result

because our proof technique is quite different.

Theorem 2. A cost function C is monotonic, linear, continuous, nonconstant, and

satisfies

C(π ⊗ ρ) = C(π) + C(ρ) (3.5)

for all π, ρ ∈ Π if and only if C has the form

C(π) =
N∑
i=1

N∑
j=1
i ̸=j

βij

M∑
s=1

πs(i) ln

(
πs(i)

πs(j)

)
, (3.6)

with parameters βij ∈ R+ not all zero.

The proof is given in Appendix B.2. The approach is similar to the proof of
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Theorem 1. Using Proposition 1, the problem reduces to finding a generating function

c that satisfies
M∑
s=1

L∑
t=1

c(πsρt) =
M∑
s=1

c(πs) +
L∑

t=1

c(ρt).

Solving this functional equation gives us

c(x) =
N∑
i=1

N∑
j=1
j ̸=i

βijx(i) ln

(
x(i)

x(j)

)
,

which yields (3.6).

A stark difference between the cost functions in (3.3) and (3.6) is the number

of parameters. Each parameter βij can be interpreted as the cost of discriminating

between states i and j, requiring N(N − 1) parameters. In contrast, (3.3) has only

N + 1 parameters.

4 Information Acquisition in Decision Problems

In this section we explore the implications of the cost function (3.3) for decision

problems. The examples considered also appear in Pomatto et al. (2023). An agent

chooses an action a from a finite set A. The payoff from a in state i is given by u(a, i).

The agent has a full-support prior µ0 ∈ ∆(Θ). Before taking an action, the agent can

choose an experiment π for a cost C(π), where C is the cost function in (3.3). Since

C is monotone with respect to the Blackwell order, it is without loss of generality to

restrict attention to experiments where the set of signal realizations equals the set of

actions A, and to assume that the decision maker will take the action recommended

by the signal. We can thus identify an experiment π with a vector of probability

measures over actions π ∈ ∆(A)N .
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An optimal experiment solves

π∗ ∈ argmax
π∈∆(A)N

∑
i∈Θ

(
µ0(i)

∑
a∈A

πa(i)u(a, i)

)
− C(π). (4.1)

Thus under an optimal experiment the action a is chosen in state i with probability

π∗
a(i).

4.1 Identifying the Cost Function from Observed Choices

We begin by examining the problem of identifying and testing our model using data

from observed choices. Consider the simple binary choice problem with two states

Θ = {1, 2} and a uniform prior. The agent can choose between actions a1 and a2. If

the action matches the state she receives a payoff of v > 0, and otherwise she receives

a payoff of 0. The agent’s optimization problem is then

max
πa1 (1),πa2 (2)∈(0,1)

v

2
[πa1(1)+πa2(2)]−

1

λ
[πa1(1)

α1(1− πa2(2))
α2 + (1− πa1(1))

α1πa2(2)
α2 − 1] .

The choice probabilities (πa(i))i∈Θ,a∈A are observed by an analyst who wishes to

determine if these probabilities are consistent with the cost function (3.3). Recalling

that α2 = 1−α1, this is true if there exist coefficients (λ, α1) that satisfy the first-order

conditions
λv

2
= α1

(
1− πa2(2)

πa1(1)

)1−α1

− α1

(
πa2(2)

1− πa1(1)

)1−α1

(4.2a)

λv

2
= (1− α1)

(
1− πa1(1)

πa2(2)

)α1

− (1− α1)

(
πa1(1)

1− πa2(2)

)α1

. (4.2b)

For instance, suppose that v = 3 and the analyst observes the agent taking the

correct action 30% of the time in state 1, and 60% of the time in state 2. Then we can

numerically solve the first-order conditions to find that λ ≈ −4.79, α1 ≈ 4.85, and

α2 ≈ −3.85. Since α1 > 1 and λ < 0, these choice probabilities are inconsistent with

the cost function (3.3) as it would mean the generating function (3.4) is not convex.
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But now suppose that the agent takes the correct action 80% of the time in state 1,

and 70% of the time in state 2. This corresponds to parameter values of λ ≈ −0.209,

α1 ≈ 0.837, and α2 ≈ 0.163. Hence this choice behavior can be explained by our

model. Of course in general, when there are more than two states and two actions,

the analyst would need data from multiple decision problems to point-identify the

parameters.

Figure 1 depicts all choice probabilities that are consistent with the cost function

(3.3), and the corresponding values of α1 and λ, for v = 3. There are no α1 and λ

pairs that are consistent with πa1(1) + πa2(2) ≤ 1 or λ = 0. We can think of λ as

parameterizing the overall cost of learning. Since it is the inverse of λ that enters into

(3.3), the amount of learning is increasing in the absolute value of λ. On the other

hand, α1 parameterizes the relative ease of learning about state 1. Higher values of α1

will skew learning towards state 1, so that the decision maker will be more accurate

in state 1.

For instance, when α1 = α2 = 1/2 we have that λ < 0 and πa1(1) = πa2(2),

i.e., the probability of guessing correctly is the same in both states. The probability

of choosing correctly approaches 1/2 as λ approaches 0, and approaches 1 as |λ|

increases. If we instead hold λ < 0 constant, increasing α1 from 1/2 leads to an

increase in πa1(1).

When λ > 0, negative values of α1 correspond to πa1(1) < πa2(2), and positive

values to πa1(1) > πa2(2). When α1 = −1, the value of πa1(1) = 1/2 is the same for

any valid λ > 0, while the amount of learning about state 2, πa2(2), is increasing in

λ. In a sense, α1 = −1 implies that learning about state 1 is inelastic. When α1 is

held fixed between 0 and −1, then the amount of learning about state 1, πa1(1) is

decreasing in λ. If instead we fix some α1 > −1, then πa1(1) is increasing in λ.

Note that when α1 < −1 we have πa1(1) < 1/2, so that the probability of guessing

correctly in state 1 is actually lower than it would be in the absence of any learning.

Hence if we are performing an experiment to test the hypothesis that the true state
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(a) Contour plot of values of α1. (b) Contour plot of values of λ.

Figure 1: Values of α1 and λ that are consistent with observed choice probabilities for v = 3. There
are no α1 and λ pairs that are consistent with the lower region where πa1

(1) + πa2
(2) ≤ 1, or where

λ = 0.

is 2, α1 < −1 would increase the probability of a Type II error, in the sense that the

decision maker would be more likely to accept the hypothesis and choose action a2

when the true state is 1.

The case of λ > 0 tends to lead to asymmetry in the choice probabilities. This

is because in order for there to be increasing marginal costs, we must have αi > 1

for some i. But to ensure convexity of the generating function and hence Blackwell

monotonicity, we must then have α−i < 0. This strongly skews the choice probabil-

ities in favor of the cheaper state. Hence diseconomies of scale in information costs

characterized by (3.1) differ fundamentally from traditional diseconomies of scale, as

the increasing marginal costs cannot apply equally to all states.

Note the teardrop-shaped region: within this region λ < 0, and outside of it λ > 0.

In fact, this teardrop-shaped region is identical to the range of choice probabilities

that can be consistent with the LLR cost function for β12, β21 > 0; compare Figure

2 of Pomatto et al. (2023). This can be shown simply by comparing the first-order

conditions of the decision problem.
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Proposition 2. A choice behavior π can be explained by the LLR cost function with

β1,2, β2,1 > 0 if and only if it can be explained by the cost function (3.3) with λ < 0.

Proof. Define ℓ1 =
1−πa2 (2)

πa1 (1)
and ℓ2 =

πa2 (2)

1−πa1 (1)
. From the first order conditions for

(4.1), the LLR cost function can explain a choice behavior with strictly positive β’s

iff

ℓ2 − ℓ1 + ln(ℓ1/ℓ2) > 0 1/ℓ1 − 1/ℓ2 + ln(ℓ1/ℓ2) > 0. (4.3)

The first order conditions (4.2) can be simplified to give us

α1(ℓ
1−α1
1 − ℓ1−α1

2 ) + (1− α1)(ℓ
−α1
1 − ℓ−α1

2 ) = 0. (4.4)

The left-hand side of this equation as a function of α1 resembles a negative cubic

function, rising to the left and descending to the right. There are always roots at

α1 = 0 and α1 = 1. The third and final root will be between 0 and 1 when the

derivative of the LHS is negative at both α1 = 0 and α1 = 1. The derivative of

the LHS evaluated at α1 = 0 is −(ℓ2 − ℓ1 + ln(ℓ1/ℓ2)), and evaluated at α1 = 1 is

−(1/ℓ1 − 1/ℓ2 + ln(ℓ1/ℓ2)). These derivatives are just the negatives of the left-hand

sides of (4.3). Now recall that λ < 0 is implied by α1 ∈ (0, 1). Hence the conditions

for the choice behavior to be explicable by (3.3) with λ < 0 are the same as the

conditions for them to be explicable by the LLR cost function with strictly positive

parameters.

Hence the case of diseconomies of scale where λ > 0 strictly expands the set of

explicable choice probabilities compared to the LLR cost function. In fact, we can

obtain a special case of the LLR cost function by taking the limit of (3.3) as λ → 0.

We will use the fact that

ln(z) = lim
a→0

za − 1

a
.
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Now set β12 = 1 and β21 = 0. Then

CLLR(π) = lim
λ→0

1

λ

(
π1(1)

1+λπ1(2)
−λ + π2(1)

1+λπ2(2)
−λ − 1

)
,

i.e. the cost function in (3.3) with α1 = 1 + λ and α2 = λ.

4.2 Perception Task

We will next the implications of our cost function for the classic perception task in

which an agent is shown an even number of dots, each of which is either red or blue.

The agent decides whether there are more blue or red dots, and receives a reward

if correct. Intuitively, it should be harder to guess correctly when the difference in

the number of dots of different colors is small. This is a canonical experiment in the

literature on rational inattention (e.g. Caplin and Dean, 2013).

The total number of dots n > 0 is fixed and known to the agent. The number i of

blue dots is drawn uniformly from the set Θ = {0, . . . , n/2− 1, n/2 + 1, . . . , n}. The

action set is A = {B,R} and the utility function is

u(a, i) =


1, if a = B and i > n/2

1, if a = R and i < n/2

0, otherwise.

For a vector of distributions over actions π, the decision maker guesses correctly

in state i with probability πB(i) if i > n/2, and πR(i) if i < n/2. Under mutual

information costs, the optimal experiment must induce a probability of guessing cor-

rectly that is state-independent, i.e., the probability of a correct choice must be the

same for any two states that lead to the same utility function over actions (Dean and

Neligh, 2017). In contrast, both the cost function in (3.3) and the LLR cost function

can predict a sigmoidal relation between the state and the choice probability with an
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(a) Values of αi across states for different values of γ. (b) Predicted probability of guessing that there are more
blue dots as a function of the state with λ = −1.

,

Figure 2: Perception Task

appropriate choice of parameters. Such a sigmoidal relation is more consistent with

the psychometric functions typical of such a task.

To understand the role of the parameters, consider a family of example values

of {αi} determined by a hyperparameter γ > 0, and set λ = −1. Define α̂i(γ) :=

|i− n/2|−γ for γ > 0. We can then normalize to define αi(γ) = α̂i/
∑

j α̂j. Hence the

value of αi is decreasing in the difference between the number of blue and red dots.

The parameter γ determines the magnitude of this dependence: as γ goes to zero, all

states become equally costly to learn about. This is depicted in Figure 2a.

Figure 2b shows the predicted choice probabilities of optimal experiments under

the cost function (3.3). When γ is high so that states close to n/2 are more costly

to observe, the resulting function is sigmoidal. When γ is small so that all values of

αi approach the same value, the choice probabilities resemble those obtained using

mutual information costs: since all states are equally costly to observe, the choice

probabilities only depend on whether or not the state is above or below the critical

threshold of n/2. Of course, this feature could be achieved using other cost functions

that can account for the difficulty of distinguishing different states (Pomatto et al.,

2023; Hébert and Woodford, 2021), but our cost function can do so with only n

parameters.
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5 Posterior Separability

Given a prior µ ∈ ∆(Θ), a distribution of posteriors is Bayes plausible if the expected

posterior probability distribution equals the prior. We will write I(µ) ∈ ∆(∆(Θ)) for

the set of Bayes plausible distributions given a prior µ. This provides an alternative

to directly modeling Blackwell experiments when given a prior, as any experiment will

induce a Bayes plausible distribution of posteriors. Two experiments are Blackwell

equivalent if for any prior they induce the same distribution over posteriors. We will

write ⟨π|µ⟩ ∈ I(µ) for the distribution of posteriors induced by an experiment π given

the prior µ. An attention cost function K : ∆(Θ)×∆(∆(Θ)) → R takes as arguments

a prior and a Bayes plausible distribution of posteriors.

Our definition of posterior separability follows Caplin et al. (2022):

Definition 7. Given a prior µ ∈ ∆(Θ), an attention cost function K is posterior-

separable if there exists a strictly convex function kµ : ∆(Θ) → R, real-valued if the

support is the same as the prior, such that, given p ∈ I(µ),

K(µ, p) =
∑

ν∈supp(p)

p(ν)kµ(ν)− kµ(µ). (5.1)

Note that the function kµ is allowed to vary with the prior. A cost function K

is uniformly posterior-separable if the function kµ does not depend on the prior, i.e.,

there is some function k such that kµ = k for all priors µ.

Definition 8. A cost function C has a posterior-separable representation if there

exists an attention cost function K such that for all full-support priors µ ∈ ∆(Θ) and

π ∈ Π,

C(π) = K(µ, ⟨π|µ⟩).

We will now show that cost functions satisfying the assumptions in Proposition 1

can indeed be represented by a posterior-separable attention cost function, but this

representation is not uniformly posterior-separable.
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Proposition 3. If a cost function C is Blackwell monotonic, linear, and continuous

then it has a posterior-separable representation.

For instance, consider the LLR cost function in (3.6). This cost function can

be reformulated so that it has the posterior-separable form in (5.1) by defining kµ :

∆(Θ) → R via

kµ(ν) =
∑
i ̸=j

βij
ν(i)

µ(i)
ln

ν(i)

ν(j)
,

where µ ∈ ∆(Θ). Even though this kµ depends on the prior, the cost K(µ, ⟨π|µ⟩) of

an experiment π is independent of the prior and depends only on the experiment.

This holds in general. While the experiment cost functions we have considered may

have posterior-separable representations, they are not uniformly posterior-separable.

On the other hand, the mutual information cost function used widely in the rational

inattention literature is uniformly posterior-separable and cannot be represented with

an experiment cost function in the form (2.2).

6 Conclusion

In this paper we present a theory of information acquisition that explores the notion

of economies and diseconomies of scale in the cost of information production. This

builds on the work on constant returns to scale in Pomatto et al. (2023). Our cost

function is tractable with a straightforward interpretation and has distinct economic

implications.

We propose several avenues for future research. The first is an extension of our

framework beyond the setting of a finite set of states and experiments with a finite

number of signals. Second, there are numerous settings which have modeled informa-

tion costs using entropy reduction (Van Nieuwerburgh and Veldkamp, 2010), and it

would be interesting to see how sensitive the results are to assumptions on economies

of scale. Finally, it remains to explore other formulations of information costs that
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exhibit diseconomies of scale.
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A Proof of Proposition 1

We begin by introducing two lemmas that will be used in providing conditions for

the separability of a cost function. We then proceed to give a proof of Proposition 1.

As a preliminary, define D ⊂ RN ×RN as D = {(x1, x2)|x1, x2, x1+x2 ∈ (0, 1)N}.

We will frequently use D as the domain of a function. Additionally, given M ≥ 2,

define ΠM ⊂ Π to be the set of all experiments with a signal space of size M .

Lemma 1. If a cost function C is linear and assigns the same cost to Blackwell

equivalent experiments, then there exists a function H : D → R such that for all M

and π ∈ ΠM with π1 + π2 ∈ (0, 1)N ,

C(π1, . . . , πM)− C(π1 + π2, π3, . . . , πM) = H(π1, π2).

Proof. Take any M and L, and choose any π ∈ ΠM+1 and π′ ∈ ΠL+1 such that

π1 = π′
1 and π2 = π′

2. Define ρ ∈ ΠM via

ρ1 = π1 + π2, and ρs = πs+1 for s = 2, . . . ,M.

Similarly, define ρ′ ∈ ΠL via

ρ′1 = π′
1 + π′

2, and ρ′s = π′
s+1 for s = 2, . . . , L.

Now define the mixed experiments

τ =
1

2
ρ⊕ 1

2
π′ and τ ′ =

1

2
ρ′ ⊕ 1

2
π.
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Given the definition of ρ and ρ′, we have that

τ1 =
1

2
(π1 + π2), τ2 =

1

2
π3, τ3 =

1

2
π4, . . . , τM =

1

2
πM+1,

τM+1 =
1

2
π′
1, τM+2 =

1

2
π′
2, τM+3 =

1

2
π′
3, . . . , τM+L+1 =

1

2
π′
L+1,

and

τ ′1 =
1

2
(π′

1 + π′
2), τ ′2 =

1

2
π′
3 τ ′3 =

1

2
π′
4, . . . , τ ′L =

1

2
π′
L+1,

τ ′L+1 =
1

2
π1, τ ′L+2 =

1

2
π2, τ ′L+3 =

1

2
π3, . . . , τ ′M+L+1 =

1

2
πM+1.

Since π1 = π′
1 and π2 = π′

2, we clearly have that τ and τ ′ are Blackwell equivalent.

Thus since C assigns the same cost to Blackwell equivalent experiments, we have

that

C

(
1

2
ρ⊕ 1

2
π′
)

= C

(
1

2
ρ′ ⊕ 1

2
π

)
.

Now since C is linear, it follows that

1

2
C(ρ) +

1

2
C(π′) =

1

2
C(ρ′) +

1

2
C(π),

and hence

C(π)− C(ρ) = C(π′)− C(ρ′).

Therefore, for any M,L ≥ 2 and any π ∈ ΠM and π′ ∈ ΠL, if π1 = π′
1 and π2 = π′

2

then

C(π1, . . . , πM)− C(π1 + π2, . . . , πM) = C(π′
1, . . . , π

′
L)− C(π′

1 + π′
2, . . . , π

′
L).

Hence there exists a function H : D → R such that for all π ∈ Π,

C(π1, . . . , πM)− C(π1 + π2, π3, . . . , πM) = H(π1, π2).
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The following lemma is Theorem 2.2.4 in Ebanks et al. (1998).

Lemma 2. A function H : D → R satisfies

H(x1, x2) = H(x2, x1),

for all x1, x2 ∈ (0, 1)N with x1 + x2 ∈ (0, 1)N , and

H(x1, x2) +H(x1 + x2, x3) = H(x1, x2 + x3) +H(x2, x3),

for all x1, x2, x3 ∈ (0, 1)N with x1 + x2 + x3 ∈ (0, 1)N , if and only if there exists a

function h : (0, 1)N → R such that

H(x1, x2) = h(x1) + h(x2)− h(x1 + x2) (A.1)

for all x1, x2 ∈ (0, 1)N with x1 + x2 ∈ (0, 1)N .

Proof of Proposition 1. ( =⇒ ) First, suppose a cost function C is Blackwell mono-

tonic, linear and continuous. We will show that there is a convex, homogeneous, and

continuous function c such that (2.2) holds for all π.

Separability We first show that there exists a function c : (0, 1) → R such that

(2.2) holds for all π.

By Lemma 1, there exists a function H : D → R such that for all M and π ∈ ΠM ,

C(π1, π2, π3, . . . , πM)− C(π1 + π2, π3, . . . , πM) = H(π1, π2). (A.2)

Since Blackwell equivalent experiments have the same cost, the cost function C is
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invariant to permutations of the signals. Hence

H(π1, π2) = C(π1, π2, π3, . . . , πM)− C(π1 + π2, π3, . . . , πM)

= C(π2, π1, π3, . . . , πM)− C(π2 + π1, π3, . . . , πM)

= H(π2, π1),

(A.3)

so that H is symmetric. We also have that

C(π1, . . . , πM) = C(π1 + π2, . . . , πM) +H(π1, π2)

= C(π1 + π2 + π3, . . . , πM) +H(π1 + π2, π3) +H(π1, π2)

...

= C(π1 + · · ·+ πt, . . . , πM) +
t∑

s=2

H(π1 + · · ·+ πs−1, πs)

...

= C(111− πM , πM) +
M−1∑
s=2

H(π1 + · · ·+ πs−1, πs).

(A.4)

Thus, using (A.4) and Blackwell monotonicity, we have that for all M ≥ 3 and

π ∈ ΠM

H(π1 + π2, π3) +H(π1, π2)

=
[
C(π1 + π2, . . . , πM)− C(π1 + π2 + π3, . . . , πM)

]
+
[
C(π1, . . . , πM)− C(π1 + π2, . . . , πM)

]
= C(π1, . . . , πM)− C(π1 + π2 + π3, . . . , πM)

= C(π1, π3, π2 . . . , πM)− C(π1 + π2 + π3, . . . , πM)

=
[
C(π1 + π3, π2, . . . , πM)− C(π1 + π2 + π3, . . . , πM)

]
+
[
C(π1, π3, π2, . . . , πM)− C(π1 + π3, π2, . . . , πM)

]
= H(π1 + π3, π2) +H(π1, π3).

(A.5)
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By equations (A.3) and (A.5) and Lemma 2, we have that there exists a function

h : (0, 1)N → R such that (A.1) holds. Hence, using (A.4), we have that for all

M ≥ 3 and π ∈ ΠM

C(π1, . . . , πM)

= C(111− πM , πM) +
M−1∑
s=2

[
h(π1 + · · ·+ πs−1) + h(πs)− h(π1 + · · ·+ πs)

]
= C(111− πM , πM) +

M−1∑
s=2

h(πs)− h(π1 + · · ·+ πM−1)

= C(111− πM , πM) +
M−1∑
s=2

h(πs)− h(111− πM−1).

Now define g : (0, 1)N → R via

g(x) = C(111− x, x)− h(111− x),

so that for all M ≥ 3 and π ∈ ΠM ,

C(π1, . . . , πM) =
M−1∑
s=1

h(πs) + g(πM). (A.6)

Now again using the assumption of Blackwell monotonicity we have that for all M ≥ 3

and π ∈ ΠM

M−1∑
s=1

h(πs) + g(πM) = C(π1, . . . , πM−1, πM)

= C(π1, . . . , πM , πM−1)

=
M−2∑
s=1

h(πs) + h(πM) + g(πM−1),

which reduces to

g(πM) + h(πM−1) = g(πM−1) + h(πM),
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so that for all x1, x2 ∈ (0, 1)N with x1 + x2 ∈ (0, 1)N

g(x1)− h(x1) = g(x2)− h(x2). (A.7)

Now given x1, x2 ∈ (0, 1)N with x1 + x2 ∈ (0, 1)N , choose x3 ∈ (0, 1)N such that

x1 + x3 ∈ (0, 1)N and x2 + x3 ∈ (0, 1)N . Two applications of (A.7) gives us that

g(x1)− h(x1) = g(x3)− h(x3) = g(x2)− h(x2).

Thus, g(x)−h(x) is constant for all x ∈ (0, 1)N , i.e., g(x) = h(x)+ a for some a ∈ R.

Putting this into (A.6) we have that for all M ≥ 3 and π ∈ ΠM ,

C(π1, . . . , πM) =
M∑
s=1

h(πs) + a

=
M∑
s=1

[
h(πs) + aπs(1)

]
.

Now define c : (0, 1)N → R via

c(x) = h(x) + ax(1), (A.8)

where x(1) is the first component of x ∈ (0, 1)N . Thus, we have (2.2) for all M ≥ 3

and π ∈ ΠM .

For the case of M = 2, note that from (A.1) and (A.8) we have that for all

x1, x2 ∈ (0, 1)N with x1 + x2 ∈ (0, 1)N ,

H(x1, x2) = c(x1) + c(x2)− c(x1 + x2). (A.9)

Now choose some π ∈ Π2 and x1, x2 ∈ (0, 1)N such that x1 + x2 = π1. It follows from
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(A.9), (2.2) for M = 3, and (A.2) for M = 2 that

C(π1, π2) = C(x1 + x2, π2)

= C(x1, x2, π2)−H(x1, x2)

= c(x1) + c(x2) + c(π2)−
[
c(x1) + c(x2)− c(x1 + x2)

]
= c(π1) + c(π2).

Thus we have (2.2) for all π ∈ Π.

Homogeneity (rational β) We will show that for all x ∈ (0, 1)N and for all β ∈ Q

with 0 < β < max{1/x(1), . . . , 1/x(N)},

βc(x(1), . . . , x(N)) = c(βx(1), . . . , βx(N)), (A.10)

where x(i) denotes the ith element of x. We will cover the case of irrational β after

proving convexity of c.

Choose p1 . . . , pN ,m, r ∈ Q such that m ≥ 2, 1 ≤ r ≤ m, and 0 < pi <
m
r
, i =

1, . . . , N . Letting M = 2 and L = r + 1, define the experiments π ∈ ΠM and ρ ∈ ΠL

via

π(i) =
(
pi

r

m
, 1− pi

r

m

)
, and

ρ(i) =

(
pi

1

m
, . . . , pi

1

m
, 1− pi

r

m

)
.

Note that π and ρ are Blackwell equivalent—the first r−1 signals in ρ are redundant.
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Hence by the separability of C we have that

0 = C(π)− C(ρ)

=
[
c
(
p1

r

m
, . . . , pN

r

m

)
+ c
(
1− p1

r

m
, . . . , 1− pN

r

m

)]
−

[
r∑

n=1

c

(
p1

1

m
, . . . , pN

1

m

)
+ c
(
1− p1

r

m
, . . . , 1− pN

r

m

)]

= c
(
p1

r

m
, . . . , pN

r

m

)
− rc

(
p1

1

m
, . . . , pN

1

m

)
,

and thus

rc

(
p1

1

m
, . . . , pN

1

m

)
= c

(
p1

r

m
, . . . , pN

r

m

)
.

In the case r = m we have

c

(
p1

1

m
, . . . , pN

1

m

)
=

1

m
c (p1, . . . , pN) ,

and so in general

c
(
p1

r

m
, . . . , pN

r

m

)
=

r

m
c (p1, . . . , pN) .

Choosing β = r/m gives us (A.10) for β ∈ Q.

Note that we have only proved (A.10) for rational β—we will show that it also

holds for all real β below, after proving the convexity and continuity of c.

Convexity Take any β ∈ (0, 1) and x1, x2 ∈ (0, 1)N . We will prove that

c(βx1 + (1− β)x2) ≤ βc(x1) + (1− β)c(x2). (A.11)

Choose any π ∈ ΠM such that π1 = βx1 + (1− β)x2. As a first step, we will show
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that

c(βx1) + c((1− β)x2) = βc(x1) + (1− β)c(x2). (A.12)

If β ∈ Q, then (A.12) is a direct result of (A.10). So consider the case where β is

irrational. Then we can construct a sequence (βi)
∞
i=1, with βi ∈ Q and βi ∈ (0, 1)

for all i, such that βi −→ β. By (A.10), we have that for all i and x ∈ (0, 1)N ,

c(βix) = βic(x). It follows that for all x ∈ (0, 1)N , c(βix) −→ βc(x). Thus

C(βix1, (1− βi)x2, π2, . . . , πM) = c(βix1) + c((1− βi)x2) +
M∑
s=2

c(πs)

−→ βc(x1) + (1− β)c(x2) +
M∑
s=2

c(πs).

And since C is continuous, we have also have that

C(βix1, (1− βi)x2, π2, . . . , πM) −→ C(βx1, (1− β)x2, π2, . . . , πM)

= c(βx1) + c((1− β)x2) +
M∑
s=2

c(πs).

This gives us (A.12).

Next, note that by Blackwell monotonicity of C we have

C(βx1 + (1− β)x2, π2, . . . , πM) ≤ C(βx1, (1− β)x2, π2, . . . , πM).
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It follows that

c(βx1 + (1− β)x2) +
M∑
s=2

c(πs) = C(βx1 + (1− β)x2, . . . , πM)

≤ C(βx1, (1− β)x2, π2, . . . , πM)

= c(βx1) + c((1− β)x2) +
M∑
s=2

c(πs)

= βc(x1) + (1− β)c(x2) +
M∑
s=2

c(πs),

which implies (A.11).

Continuity Since c : (0, 1)N → R is convex with an open domain, it is continuous.

Homogeneity (irrational β) Finally, it remains to show that for all x ∈ (0, 1)N ,

(A.10) holds for all irrational β ∈ (0,max{1/x(1), . . . , 1/x(N)}). Take such a β.

Similar to what we have done before, construct a sequence (βi)
∞
i=1, with βi ∈ Q and

βi ∈ (0,max{1/x(1), . . . , 1/x(N)}) for all i, such that βi −→ β. By (A.10), we have

that for all i and x ∈ (0, 1)N , c(βix) = βic(x). It follows that c(βix) −→ βc(x).

And since c is continuous, we know that c(βix) −→ c(βx). We then have that

c(βx) = βc(x).

Therefore, if a cost function C is Blackwell monotonic, linear and continuous,

then there is a convex, homogeneous, and continuous function c such that (2.2) holds

for all π.

( ⇐= ) For the converse, take a cost function C and suppose that there exists a

continuous function c : (0, 1)N → R that is convex and homogeneous of degree one

such that (2.2) holds for all π ∈ Π. We will show that C is Blackwell monotonic,

linear, and continuous.
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Linearity Take any β ∈ (0, 1) and experiments π ∈ ΠM and ρ ∈ ΠL. Then by (2.2)

and the homogeneity of c we have

C(βπ ⊕ (1− β)ρ) =
M∑
s=1

c(βπs) +
L∑

t=1

c((1− β)ρt)

=
M∑
s=1

βc(πs) +
L∑

t=1

(1− β)c(ρt)

= βC(π) + (1− β)C(ρ).

Thus C is linear.

Blackwell Monotonicity Given π ∈ Π, take β ∈ (0, 1) and x1, x2 ∈ (0, 1)N such

that βx1+(1−β)x2 = π1. Then by the convexity and homogeneity of c we have that

C(βx1, (1− β)x2, π2, . . . , πM) = c(βx1) + c((1− β)x2) +
M∑
s=2

c(πs)

= βc(x1) + (1− β)c(x2) +
M∑
s=2

c(πs)

≥ c(βx1 + (1− β)x2) +
M∑
s=2

c(πs)

= C(π1, . . . , πM).

It follows that for all π ∈ Π such that π1 + π2 ∈ (0, 1)N ,

C(π1, . . . , πM) ≥ C(π1 + π2, π3, . . . , πM).

Similarly, we have that for any s ∈ {1, . . . ,M − 1},

C(π1, . . . , πM) ≥ C(π1 . . . , πs + πs+1, . . . , πM). (A.13)

Now take π ∈ ΠM and ρ ∈ ΠL such that π strictly dominates ρ in the Blackwell
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ordering. Then ρ is a garbling of π, i.e., there exists some g : SM × SL → [0, 1] such

that

L∑
t=1

g(s, t) = 1 ∀s ∈ SM , and

ρt(i) =
M∑
s=1

g(s, t)πs(i) ∀i ∈ Θ, t ∈ SL.

Construct the experiment σ ∈ ΠM×L, with σs,t(i) = g(s, t)πs(i).3 Note that π and

σ are Blackwell equivalent—we have just added some redundant signals. By the

homogeneity of c we have that

C(π) =
M∑
s=1

c(πs)

=
M∑
s=1

L∑
t=1

g(s, t)c(πs)

=
M∑
s=1

L∑
t=1

c(g(s, t)πs)

= C(σ).

3Indexing σ by writing σs,t is a slight abuse of notation, but it simplifies the exposition.

34



By repeated application of (A.13) it follows that

C(π) = C(σ)

= C(σ1,1, σ2,1, σ3,1, . . . , σM,L−1, σM,L)

≥ C(σ1,1 + σ2,1, σ3,1, . . . , σM,L−1, σM,L)

...

≥ C(
M∑
s=1

σs,1, σ1,2, σ2,2, . . . , σM,L−1, σM,L)

...

≥ C

(
M∑
s=1

σs,1,
M∑
s=1

σs,2, . . . ,
M∑
s=1

σs,L

)
= C(ρ).

Hence C is Blackwell monotonic.

Continuity Take any experiment (M,π) and any sequence of experiments (M,π1), (M,π2), (M,π3), . . .

such that for all i we have πn(i) → π(i). This implies that πn
s → πs for s = 1, . . . ,M .

Since c is continuous, we have that c(πn
s ) → c(πs). Using (2.2), we find that

C(πn) → C(π). Hence C is continuous.

Therefore, C is Blackwell monotonic, linear, and continuous.

B Proofs for Section 3

B.1 Proof of Theorem 1

Before proceeding, we introduce the following definitions.
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Definition 9. A function A : RN → R is additive if for all x, y ∈ RN ,

A(x+ y) = A(x) + A(y).

Definition 10. A function D : RN → R is multiplicative if for all x, y ∈ RN ,

D(xy) = D(x)D(y),

where the multiplication xy is performed component-wise.

The following lemma is from Theorem 8.3.5 in Ebanks et al. (1998).

Lemma 3. For fixed M ≥ 3, L ≥ 2 or M ≥ 2, L ≥ 3 let f : (0, 1)N → R satisfy

M∑
s=1

L∑
t=1

f(πsρt) =
M∑
s=1

L∑
t=1

f(πs)f(ρt).

for all π ∈ ΠM and ρ ∈ ΠL. Then one of the following holds:

1. There exists a constant a ∈ R and an additive function A : RN → R such that

f(x) = A(x) + a, and

A(111) +MLa = (A(111) +Ma)(A(111) + La),
(B.1)

for all x ∈ (0, 1)N .

2. There exists a multiplicative function D : RN
+ → R and an additive function

B : RN → R such that

f(x) = D(x) +B(x), and

B(111) = 0.
(B.2)

Proof of Theorem 1. Suppose that a cost function C is monotonic, linear, continuous,

nonconstant, and satisfies (3.2) for all π, ρ ∈ Π. Then by Proposition 1 there exists a
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function c : (0, 1)N such that C(π) =
∑M

s=1 c(πs) for all π ∈ Π. It follows that for all

π ∈ ΠM and ρ ∈ ΠL,

C(π ⊗ ρ) =
M∑
s=1

L∑
t=1

c(πsρt).

We can then rewrite (3.2) as

M∑
s=1

L∑
t=1

c(πsρt) =
M∑
s=1

c(πs) +
L∑

t=1

c(ρt) + λ

M∑
s=1

c(πs)
L∑

t=1

c(ρt). (B.3)

Now define f : (0, 1)N → R via

f(x) = λc(x) +
1

N

N∑
i=1

x(i) (B.4)

for x ∈ (0, 1)N , where x(i) denotes the ith component of x. Using the definition of f

and (B.3) we have that for all π ∈ ΠM and ρ ∈ ΠL

M∑
s=1

f(πs)
L∑

t=1

f(ρt) =
M∑
s=1

(
λc(πs) +

1

N

N∑
i=1

πs(i)

)
L∑

t=1

(
λc(ρt) +

1

N

N∑
i=1

ρt(i)

)

=

(
λ

M∑
s=1

c(πs) + 1

)(
λ

L∑
t=1

c(ρt) + 1

)

= λ

(
M∑
s=1

c(πs) +
L∑

t=1

c(ρt) + λ
M∑
s=1

c(πs)
L∑

t=1

c(ρt)

)
+ 1

= λ

M∑
s=1

L∑
t=1

c(πsρt) + 1

=
M∑
s=1

L∑
t=1

(
λc(πsρt) +

1

N

N∑
i=1

πsρt(i)

)

=
M∑
s=1

L∑
t=1

f(πsρt).

(B.5)
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Thus, C satisfies (3.2) if and only if f satisfies

M∑
s=1

L∑
t=1

f(πsρt) =
M∑
s=1

L∑
t=1

f(πs)f(ρt). (B.6)

It follows from Lemma 3 that one of the following holds:

1. There exists a constant a ∈ R and an additive A : RN → R such that for all

x ∈ (0, 1)N ,

c(x) =
1

λ

(
A(x) + a− 1

N

N∑
i=1

x(i)

)
, (B.7)

where a and A satisfy

A(111) +MLa = (A(111) +Ma)(A(111) + La) (B.8)

for all M ≥ 3, L ≥ 2 or M ≥ 2, L ≥ 3.

2. There exists a multiplicative D : RN
+ → R and an additive B : RN → R with

B(111) = 0 such that for all x ∈ (0, 1)N ,

c(x) =
1

λ

(
D(x) +B(x)− 1

N

N∑
i=1

x(i)

)
. (B.9)

We will consider the two cases separately.

Case 1 Suppose that c has the form in (B.7). First we will split A and D by

dimension to define the additive function Ai : R → R and the multiplicative function

Di : R+ → R. When looking at the function A for the vector which has x(i) in entry

i and 0’s elsewhere, we write Ai(x(i)), so that Ai(x(i)) = A(0, . . . , 0, x(i), 0, . . . , 0).

Similarly for D when taking the vector which has x(i) in entry i and 1’s elsewhere,
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so that Di(x(i)) = D(1, . . . , 1, x(i), . . . , 1). Hence we can write A and D in the forms

A(x(1), . . . , x(N)) =
N∑
i=1

Ai(x(i)),

D(x(1), . . . , x(N)) =
N∏
i=1

Di(x(i)).

We then we have that for all π ∈ Π,

λC(π) = λ
M∑
s=1

c(πs)

=
M∑
s=1

(
A(πs) + a− 1

N

N∑
i=1

πs(i))

)

=
M∑
s=1

N∑
i=1

Ai(πs(i)) +Ma− 1

N

M∑
s=1

N∑
i=1

πs(i)

=
N∑
i=1

Ai

(
M∑
s=1

πs(i)

)
+Ma− N

N

=
N∑
i=1

Ai(1) +Ma− 1

= A(111) +Ma− 1,

so that C(π) = 1
λ
(Ma+ A(111)− 1).

Now take any M,M ′,M ′′, L, L′, L′′′ ≥ 3. Using (B.8) we can solve the system of

equations

A(111) +MLa = (A(111) +Ma)(A(111) + La)

A(111) +M ′L′a = (A(111) +M ′a)(A(111) + L′a)

A(111) +M ′′L′′a = (A(111) +M ′′a)(A(111) + L′′a),
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and find that there are three possible solutions:

A(111) = 0 and a = 0, or

A(111) = 1 and a = 0, or

A(111) = 0 and a = 1.

The forms of C corresponding to these solutions are

C(π) = −1

λ
, (B.10)

C(π) = 0, (B.11)

C(π) =
1

λ
(M − 1). (B.12)

The assumption that C is nonconstant rules out (B.10) and (B.11). The case in

(B.12) gives us (3.3) with α1 = · · · = αN = 0.

Case 2 If c is of the form (B.9), then for some additive B : RN → R we have that

for all π ∈ Π,

λC(π) = λ
M∑
s=1

c(πs)

=
M∑
s=1

(
D(πs) +B(πs)−

1

N

N∑
i=1

πs(i)

)

=
M∑
s=1

D(πs) +B(111)− 1

=
M∑
s=1

D(πs)− 1,
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so that C(π) = 1
λ

(∑M
s=1D(πs)− 1

)
. Since C is continuous D : RN

+ → R is measur-

able. The only form for a measurable multiplicative function is

D(x(1), . . . , x(N)) =
N∏
i=1

x(i)αi

for some α1, . . . , αN ∈ R (Ebanks et al., 1998, Example 1.3.5). So C is of the form in

(3.3).

Therefore, C is of the form in (3.3) for some for some α1, . . . , αN ∈ R. Note that

the generating function is

c(x) =
1

λ

(
N∏
i=1

x(i)αi − 1

N

N∑
i=1

x(i)

)
. (B.13)

Since C assigns the same cost to Blackwell equivalent experiments, by Proposition 1,

we require c in (B.13) to be homogeneous. For β ∈ (0, 1) and x ∈ (0, 1)N we have

that

c(βx) =
1

λ

(
N∏
i=1

βαix(i)αi − 1

N

N∑
i=1

βx(i)

)

=
1

λ

(
N∏
i=1

βαi

N∏
i=1

x(i)αi − β
1

N

N∑
i=1

x(i)

)

=
1

λ

(
βα1+···+αN

N∏
i=1

x(i)αi − β
1

N

N∑
i=1

x(i)

)

= β
1

λ

(
βα1+···+αN−1

N∏
i=1

x(i)αi − 1

N

N∑
i=1

x(i)

)
.

Since the nonconstancy of C implies that we cannot have αi = 0 for all i, it follows

that that c(βx) = βc(x) if and only
∑N

i=1 αi = 1.

For the converse, suppose that a cost function C takes the form in (3.6) for

all π ∈ Π, with
∑N

i=1 αi = 1 and c in (B.13) convex. Then the continuity and

homogeneity of c in (B.13), along with Proposition 1, implies that C is monotonic,
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continuous, and linear. Moreover, since
∑N

i=1 αi = 1, it follows that C is nonconstant.

Finally, by plugging (B.13) into (B.3) we can verify that C satisfies (3.5).

B.2 Proof of Theorem 2

The following lemma is from Theorem 7.2.1 in Ebanks et al. (1998)

Lemma 4. Let f : (0, 1)N → R be measurable in each variable. Then f satisfies

M∑
s=1

L∑
t=1

f(πsρt) =
M∑
s=1

f(πs) +
L∑

t=1

f(ρt)

for all π ∈ ΠM and ρ ∈ ΠL, for a fixed pair of integers M ≥ 2, L ≥ 3 or M ≥ 3, L ≥ 2,

if and only if there exist constants a1, . . . , aN ∈ R, b ∈ R, and δij, i, j = 1, . . . , N ,

such that for all x ∈ (0, 1)N

f(x) =
N∑
i=1

N∑
j=1

x(i)δij lnx(j) +
N∑
i=1

aix(i) + b,

with
N∑
i=1

ai = (ML−M − L)b,

where x(i) denotes the ith component of x.

Proof of Theorem 2. Suppose that a cost function C is monotonic, linear, continuous,

nonconstant, and satisfies (3.5) for all π, ρ ∈ Π. Then by Proposition 1 there exists

a continuous, homogeneous function c : (0, 1)N such that C(π) =
∑M

s=1 c(πs) for all

π ∈ Π. It follows that for all π ∈ ΠM and ρ ∈ ΠL,

C(π ⊗ ρ) =
M∑
s=1

L∑
t=1

c(πsρt).
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Since C satisfies (3.5), it follows that c satisfies

M∑
s=1

L∑
t=1

c(πsρt) =
M∑
s=1

c(πs) +
L∑

t=1

c(ρt)

for all M and L. So by Lemma 4, there exist constants a1, . . . , aN ∈ R and δij,

i, j = 1, . . . , N such that for all x ∈ (0, 1)N ,

c(x) =
N∑
i=1

N∑
j=1

x(i)δij lnx(j) +
N∑
i=1

aix(i),

with
∑N

i=1 ai = 0. It follows that

C(π) =
M∑
s=1

[
N∑
i=1

N∑
j=1

πs(i)δij ln πs(j) +
N∑
i=1

aiπs(i)

]

=
M∑
s=1

N∑
i=1

N∑
j=1

πs(i)δij ln πs(j).

(B.14)

Since c is homogeneous of degree one, for any β ∈ (0, 1) it must hold that c(βx) =

βc(x) for all x ∈ (0, 1)N . Now note that for β ∈ (0, 1) and x ∈ (0, 1)N ,

c(βx) =
N∑
i=1

N∑
j=1

βx(i)δij ln(βx(j)) +
N∑
i=1

aiβx(i)

= β
N∑
i=1

N∑
j=1

x(i)δij(ln β + lnx(j)) + β
N∑
i=1

aix(i)

= βc(x) +
N∑
i=1

N∑
j=1

x(i)δij ln β.

It must follow that
N∑
i=1

N∑
j=1

x(i)δij = 0

43



for all x ∈ (0, 1)N . This in turn implies that
∑N

j=1 δij = 0 for all i, or equivalently

δii = −
N∑
j=1
j ̸=i

δij, (B.15)

for all i. Defining βij = −δij for i ̸= j, we can combine (B.14) and (B.15) to get

C(π) =
N∑
i=1

N∑
j=1
j ̸=i

βij

M∑
s=1

πs(i) ln

(
πs(i)

πs(j)

)
.

Since C is nonconstant, the parameters βij are not all zero.

For the converse, suppose that a cost function has the form in (3.6) with param-

eters βij ∈ R+ not all zero. Then we can write C as C(π) =
∑M

s=1 c(πs), where for

x ∈ (0, 1)N ,

c(x) =
N∑
i=1

N∑
j=1
j ̸=i

βijx(i) ln

(
x(i)

x(j)

)
.

Since c is homogeneous of degree one, convex, and continuous, it follows from Propo-

sition 1 that C assigns the same cost to Blackwell equivalent experiments and is

continuous and linear. We also have that for all π, ρ ∈ Π,

M∑
s=1

L∑
t=1

c(πsρt) =
M∑
s=1

L∑
t=1

N∑
i=1

N∑
j=1
j ̸=i

βijπs(i)ρt(i) ln

(
πs(i)ρt(i)

πs(j)ρt(j)

)

=
M∑
s=1

N∑
i=1

N∑
j=1
j ̸=i

βijπs(i) ln

(
πs(i)

πs(j)

)
+

L∑
t=1

N∑
i=1

N∑
j=1
j ̸=i

βijρt(i) ln

(
ρt(i)

ρt(j)

)

=
M∑
s=1

c(πs) +
L∑

t=1

c(ρt),

so that C satisfies (3.5). Since the parameters βij are not all zero, C is nonconstant.
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C Proof of Proposition 3

Proof. We will first construct an attention cost function K and then show that it

represents C.

By Proposition 1, the cost function C can be written as in (2.2) with some gen-

erating function c : (0, 1)N → R that is convex and homogeneous of degree one. Let

µ ∈ ∆(Θ) be an interior belief. Given a distribution ν ∈ ∆(Θ), define iν ∈ Θ as a

state that maximizes the ratio ν(i)/µ(i):

iν ∈ argmax
i∈Θ

ν(i)

µ(i)
.

Now define the measure of uncertainty Hµ : ∆(Θ) → R as

Hµ(ν) =
ν(iν)

µ(iν)
c

(
ν(1)

µ(1)

µ(iν)

ν(iν)
, . . . ,

ν(N)

µ(N)

µ(iν)

ν(iν)

)
. (C.1)

Since c is convex and homogeneous of degree one, Hµ must also be convex and ho-

mogeneous of degree one. Thus we can consider the attention cost function

K(µ, τ) =
∑

ν∈supp(τ)

τ(ν)Hµ(ν)−Hµ(µ).

Note that Hµ(µ) = c(1, . . . , 1) = 0.

Next we will show that for all experiments π ∈ Π

C(π) = K(µ, ⟨π|µ⟩).

Take an experiment (M,π) and for all s = 1, . . . ,M define νs ∈ ∆(Θ) to be the

posterior distribution over states after having observed the signal realization s from

π:

νs(i) =
πs(i)µ(i)∑

j∈Θ πs(j)µ(j)
.
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Let τ = ⟨π|µ⟩ ∈ ∆∆(Θ) be the distribution over posteriors induced by π, so that

for all ν ∈ supp(τ)

τ(ν) =
∑

s|νs=ν

∑
i∈Θ

µ(i)πs(i).

Using the definition in (C.1) and the homogeneity of Hµ we have that

C(π) =
M∑
s=1

c(πs)

=
M∑
s=1

Hµ(πsµ)

=
∑

ν∈supp(τ)

∑
s|νs=ν

Hµ(πsµ)

=
∑

ν∈supp(τ)

∑
s|νs=ν

Hµ

(
νs
∑
i∈Θ

πs(i)µ(i)

)

=
∑

ν∈supp(τ)

∑
s|νs=ν

(∑
i∈Θ

πs(i)µ(i)

)
Hµ (ν)

=
∑

ν∈supp(τ)

τ(ν)Hµ(ν)

=
∑

ν∈supp(τ)

τ(ν)Hµ(ν)−Hµ(µ)

= K(µ, τ)

where multiplication of vectors is performed component-wise.

Therefore, C has a posterior-separable representation.
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