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Abstract

We study a model of cheap talk in which a receiver (agent), after having received a
message from a sender (principal), may endogenously acquire additional information
by paying an entropy cost. Using tools from the Bayesian persuasion and rational
inattention literature, we examine the structure of the receiver’s learning strategy and
how this influences that ability of the sender to engage in persuasive communication.
While low cost information will benefit the receiver, we find that for intermediate cost
levels it can benefit the receiver to be able to commit ex ante to not engage in learning.

1 Introduction

In many settings of strategic communication between an informed principal and an uniformed
agent, the agent has access to information beyond what is communicated by the principal.
A customer may research a product online after consulting with a salesperson, or a policy
maker may commission additional research after consulting with a think tank. Starting with
the work of Crawford and Sobel (1982), the literature on strategic information transmission
has highlighted the limitations of communication via cheap talk messages. We build on
that literature by showing how the information availability affects the ability to persuasively
communicate.

We consider a model of cheap talk with two players, a sender (the principal) and a
receiver (the agent). The receiver must choose an action which affects the payoffs of both
players. The sender has more information than the receiver and can send a message to
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influence the action of the receiver, but the sender has no commitment mechanism and
is able to lie. The receiver, after observing the message from the sender, may choose to
acquire additional information by paying a cost which depends on the amount of additional
information obtained. We assume the sender has state-independent preferences, only caring
about the action taken by the receiver, while the receiver’s payoff depends on both the action
taken as well as the state of the world, which is unknown to the receiver.

As an example, consider a customer at an electronics store trying to decide which of two
differently priced TVs to purchase. Unsure of their relative quality and not wanting to buy
the inferior one, her default decision is to leave without making any purchase. If a salesman
working on commission were to advise her that the more expensive TV is of higher quality, the
customer may be suspicious of his motives and not believe him. The salesman, recognizing
this, may decide to instead recommend the cheaper TV, since he prefers making any sale to
no sale. But then the customer would still have no reason to believe the salesman’s advice
was actually truthful. Hence the salesman cannot just directly tell the customer which TV is
superior. If the customer’s sole source of information is the salesman, the best the salesman
can do in equilibrium is to provide just enough information about the relative merits of the
TVs to make the customer indifferent between the two.

But now consider the case in which after listening to the salesman the customer can
perform her own research, for instance by reading online reviews or consulting professional
consumer reports. This could lead to a breakdown in communication between the salesman
and customer. If this information were were cheap and reliable, then nothing the salesman
could say would matter, as the customer would just find out which product to buy by
herself. But generally the quality of this information would be imperfect, and obtaining it
would require time, psychological effort, and money. This could result in the customer being
worse off in the end, since she would have to pay for the information instead of receiving it
from the salesman, and would still not be guaranteed to make the correct decision. Moreover,
the salesman could actually benefit from the customer having access to outside information,
since it would increase the probability of a sale.

Related Literature Kamenica and Gentzkow (2011) characterize the sender’s benefit
under communication with commitment in terms of a value function, giving the highest
value the sender can obtain from the receiver’s optimal behavior for given posterior beliefs.
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The concave envelope of this function gives the maximal equilibrium payoff the sender can
receive. We use a similar approach in the present paper to solve the receiver’s problem.
Essentially, the receiver is sending a message to herself, but her value function must also
incorporate the information costs.

Ravid and Lipnowski (2017) build on Kamenica and Gentzkow (2011) to examine cheap
talk when the sender’s preferences are state-independent. They show that in the absence
of commitment, the sender’s maximal value is given by the quasiconcave envelope of the
sender’s value function. This is the approach we use to analyze the sender’s problem.

While a major focus of the cheap talk literature has been biased experts (Krishna and
Morgan, 2001; Deimen and Szalay, 2018), we focus on the case of a sender who has state-
independent preferences. This allows us to build on Ravid and Lipnowski (2017), which
uses the belief-based approach from Bayesian persuasion to study cheap talk under state-
independent sender preferences. We also draw on Matějka and McKay (2015) and Kamenica
and Gentzkow (2011) in finding and characterizing the solution to the receiver’s problem.

Two closely related papers are (Matyskova, 2018) and Bloedel and Segal (2018) which
study Bayesian persuasion when the receiver has information costs. In Matyskova (2018)
the receiver can acquire costly information after receiving a message from the sender, but
unlike our present model the sender has commitment power. The main result in Matyskova
(2018) is that every equilibrium outcome can be achieved without the receiver learning: any
information that the receiver would learn can just be transmitted by the sender to begin with.
In contrast, we find that without commitment the receiver generally will learn in equilibrium,
and this can expand or shrink the set of equilibrium outcomes. Bloedel and Segal (2018)
studies a model of Bayesian persuasion where the receiver is rationally inattentive to the
sender. Both papers use the same information-cost framework as in Matějka and McKay
(2015), which we also employ.

Also related is the literature on communication with endogenous information acquisition
on the part of the sender. In both Di Pei (2015) and Argenziano et al. (2016), the sender
must pay a cost to acquire information, before transmitting a message. In contrast, it is
our receiver who has the option of paying a cost to acquire supplemental information after
receiving a signal. Additionally, we use an entropy-based cost function.

The structure we place on the receiver’s information costs draw on the rational inattention
literature, using Shannon entropy (Sims, 2003). Much of this literature focuses on single-
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agent rational inattention problems (Van Nieuwerburgh and Veldkamp, 2009; Matějka and
McKay, 2015; Caplin and Dean, 2015; Mackowiak and Wiederholt, 2009). Our model is more
closely related to the literature examining rational inattention in strategic situations. For
instance, Ravid (2017) considers bargaining with a rationally inattentive buyer, Lipnowski
et al. (2018) considers disclosure of information by a well-intentioned principal, and Bloedel
and Segal (2018) studies information disclosure when the receiver’s action set is binary.
A common theme is that the sender will strategically manipulate the receiver’s attention.
Similarly, we find that the sender will change his messaging strategy in order to manipulate
what the receiver decides to learn. Also related is Gentzkow and Kamenica (2014), who model
Bayesian persuasion where the sender must pay an entropy-based cost when transmitting
information.

The remainder of the paper is organized as follows. Section 2 sets up the basic model.
Sections 3 and 4 characterize the receiver’s problem and sender’s problem, primarily by way
of a leading example. Section 5 concludes.

2 Model

2.1 Setup

There are two players, a sender and a receiver. At the beginning of the game an unknown
payoff relevant state θ ∈ Θ is realized, which the sender perfectly observes. After observing
the state, the sender sends the receiver a message. The receiver observes the message and,
after updating her beliefs, may choose to acquire costly information about the state via an
experiment. Finally, the receiver chooses an action a ∈ A and payoffs are realized.

We assume that both Θ and A are finite sets with at least two elements. The state θ is
drawn from a full-support prior distribution µ0 ∈ ∆Θ known to both players.1 The payoff
function for the sender is us : A → R, and the (gross) payoff to the receiver is ur : A×Θ → R.
Hence while the receiver’s payoff may depend on the state, the sender’s payoff depends solely
on the action of the receiver. This state-independence assumption plays a key role in our
analysis and results.

Instead of directly modeling the signal structure, we model information transmission and
1∆Θ is the set of all probability distributions on Θ.
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acquisition using information policies, which are distributions over posterior beliefs (Ka-
menica and Gentzkow, 2011; Ravid and Lipnowski, 2017). While this is making a strong
assumption about the richness of information transmission, this abstraction greatly aids in
tractability, and allows us to focus on outcomes of the game rather than the structure of the
signals.

When either the sender or the receiver chooses an information policy, the distribution of
posteriors must average back to the prior. Hence

I(µ) :=
{
p ∈ ∆∆Θ :

∫
∆Θ

ν dp(ν) = µ

}
is the set of feasible information policies for a prior µ.

Throughout, we will use µ0 to refer to the receiver’s prior beliefs, µ1 to refer to the
receiver’s interim beliefs after receiving a message from the sender, and µ2 to refer to the
receiver’s posterior beliefs after having engaged in learning.

The timing of the game is then

1. The sender chooses an information policy p ∈ I(µ0).

2. Given interim beliefs µ1 drawn from p, the receiver chooses an information policy
qµ1 ∈ I(µ1).

3. The receiver’s posterior belief µ2 is drawn from qµ1 , and the receiver chooses an action.

We can analyze this game by working backwards. We will first look at the receiver’s
optimal action given her posterior beliefs, then her optimal information policy given her
interim beliefs, and finally determine the sender’s optimal information policy.

2.2 Receiver’s Problem

In the last stage of the receiver’s problem, given posterior beliefs µ2 ∈ ∆Θ the receiver
chooses an action with the highest expected payoff. Define the receiver’s value function

vr(µ2) := max
a∈A

Eθ∼µ2 [ur(a, θ)]. (1)

This is the maximum gross payoff that the receiver can achieve given posterior beliefs µ2.
Let α∗ : ∆Θ → ∆A be the receiver’s strategy which optimizes (1).
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In the first stage of the receiver’s problem, given interim beliefs µ1, the receiver chooses
an information policy qµ1 ∈ I(µ1), a distribution over posteriors. Note that the optimal
information policy will be a function of interim beliefs.

Following the rational inattention literature,2 we will assume that the cost of an infor-
mation policy is proportional to the change in entropy of the receiver’s beliefs,

c(q;µ1) = κ (H(µ1)− Eµ2∼q[H(µ2)]) ,

where κ ≥ 0 is a cost parameter and H : ∆Θ → R is Shannon entropy. For discrete Θ, the
entropy of a distribution µ ∈ ∆Θ is3

H(µ) = −
∑
θ∈Θ

µ(θ) ln(µ(θ)).

Entropy captures how much uncertainty about the state θ is expected to be reduced by the
information policy, in the sense of Blackwell (1953). For instance, the entropy of a discrete
distribution with N equally probable events is ln(N), while the entropy of a distribution
which places all weight on a single state is 0. With this assumption on the structure of
information costs, the receiver will only choose to acquire more information, in the Blackwell
ordering sense, if it increases her expected payoff.

Given interim beliefs µ1, the receiver’s learning problem is

max
qµ1∈∆∆Θ

Eµ2∼qµ1
[vr(µ2)]− c(qµ1 ;µ1) (2)

s.t. qµ1 ∈ I(µ1).

Matějka and McKay (2015) prove the existence of a solution to (2). We will denote an
information policy which solves (2) as q∗µ1

. Let Q∗ : ∆Θ → ∆∆Θ be a function which maps
interim beliefs to optimal information policies, so that for all µ1 ∈ ∆Θ we have Q∗(µ1) = q∗µ1

.
2e.g. Sims (2003); Yang (2017); Caplin and Dean (2013); Matějka and McKay (2015).
3By convention, we let 0 ln 0 = 0.
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2.3 Sender

Given a prior µ0 and the receiver’s strategy (α∗, Q∗), the sender chooses an information
policy p ∈ ∆∆Θ to maximize his expected payoff, subject to the constraint that p ∈ I(µ0).
Let

vs(µ1) := Eµ2∼q∗µ1
[us(α

∗(µ2)] (3)

be the sender’s expected utility when the receiver has interim beliefs µ1.
Since the sender lacks commitment power, the sender has the additional constraint that

all interim beliefs that can be induced by the information policy must yield the sender the
same expected payoff.

The sender solves the following problem

max
p∈∆∆Θ

Ep[vs(µ2)] (4)

s.t. p ∈ I(µ0) (5)

vs(µ2) = vs(µ
′
2),∀ µ2, µ

′
2 ∈ supp(p)

3 Characterization of Receiver’s Problem

We now present examples demonstrating the receiver’s learning strategy. The next section
will look at the sender’s problem.

Example 1 We will first consider the leading example from Ravid and Lipnowski (2017).
Let Θ = {1, 2}, µ0 = Pr[θ = 2] = 1/2, A = {0, 1, 2}, us(a) = a, and

ur(a, θ) =


0, if a = 0

1, if a = θ

−3, otherwise

An interpretation of this example is that the receiver is a policy maker, and the sender is
a political think tank. There are two possible policies, 1 and 2, one of which is good and the
other bad. The think tank knows which policy is best, but the policy maker thinks either
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Figure 1: Receiver’s gross value function

policy is equally likely to be the best. The policy maker can choose to implement policy 1,
policy 2, or no policy (a = 0). If the policy maker chooses the wrong policy she gets a payoff
of −3, the correct policy carries a payoff of 1, and maintaining the status quo a payoff of 0.
The think tanks political leanings are transparent, favoring the second policy over the first,
and favoring the first policy over the status quo.

If the policy maker has posterior beliefs µ2 = Pr[θ = 2], then a = 2 is a optimal if
and only if µ2 ≥ 3/4, a = 1 is optimal if and only if a ≤ 1/4, and a = 0 is optimal for
µ2 ∈ [1/4, 3/4]. Figure 1 shows the receivers gross value function vr(µ1) from equation (1).
For instance, if the receiver’s posterior is µ2 = 1/2, then the receiver chooses a = 0 and
receives a payoff of 0. If the receiver’s posterior is µ2 = 1/8, then he chooses a = 1 and has
an expected payoff of −3(1/8) + 1(7/8) = 1/2.

Now suppose that the receiver has interim beliefs µ1, and may acquire additional infor-
mation at a cost. The receiver’s optimization problem (2) is now

max
q∈∆[0,1]

Eµ2∼q[vr(µ2)]− κ(H(µ1)− Eµ2∼q[H(µ2)])

s.t. Eµ2∼q[µ2] = µ1.

Letting v̂r(µ2) = vr(µ2) + κH(µ2) and noting that κH(µ1) is a constant, the receiver’s
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(a) κ = 1.6 (b) κ = 2.25

Figure 2: Receiver learning value functions

problem is equivalent to

max
q∈∆[0,1]

Eµ2∼q[v̂r(µ2)]

s.t. Eµ2∼q[µ2] = µ1.

The value function v̂r captures both the payoff to the receiver from having a particular
posterior belief, as well as the learning cost that must be paid in order to move to that
belief. The constant κH(µ1) only depends on the receiver’s interim beliefs, and while it will
affect the receiver’s final payoff it will not affect the optimal learning strategy. Hence the
interim beliefs induced by the sender only affect the receiver’s learning choice through the
constraint q ∈ I(µ1), not by changing the shape of the value function.

The value function v̂r is plotted in blue in Figure 2 for two different values of κ. Plotted
in red is the concave envelope of v̂r, which we will call V̂r, the point-wise lowest concave
function that majorizes v̂r.

The support of the optimal information policy q∗ will be the posterior beliefs that support
the concavification at the interim belief µ1. So when V̂r(µ1) = v̂r(µ1) the receiver does
not learn. When V̂r(µ1) > v̂r(µ1), the receiver will learn. In Figure 1a with κ = 1.6,
the receiver learns whenever µ1 ∈ (µ1, µ2), and the support of the optimal policy will be
supp(q∗) = {µ1, µ2}. The weights on these two posteriors will be such that they average
back to the interim belief. Similarly, in Figure 1b with κ = 2.25, the receiver will learn
whenever µ1 ∈ (µ1, µ2) or µ1 ∈ (µ3, µ4).
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Posterior beliefs µ2 close to 1/2 have a low entropy cost because they are not very
informative, while more informative beliefs incur a higher cost. This leads to the central
hump in Figure 1. But while beliefs close to 1/2 are cheap, they are not as valuable as the
more informative beliefs. This leads to the two humps on the left and right in Figure 1.

Note how the receiver’s learning strategy changes based on the cost of learning. When
learning is relatively cheap with κ = 1.6, as in Figure 1a, the receiver learns for all inter-
mediate values of µ1, and only refrains from learning when she is relatively certain. When
learning does take place, the receiver chooses a learning strategy which will help her decide
between taking a = 1 or a = 2. Hence for κ = 1.6, the receiver will never choose a = 0

regardless of her interim beliefs.
However, when learning is more costly with κ = 2.25 the receiver refrains from learning

when she is relatively uncertain of the true state, when interim beliefs are between µ2 and
µ3 in Figure 1b. For beliefs in this range, learning would be too costly. Learning only occurs
when the receiver is close to being indifferent. Additionally, when learning does occur, the
receiver chooses a learning strategy which will help her decide between a = 1 and a = 0

(when µ1 ∈ (µ1, µ2)) or a = 2 and a = 0 (when µ1 ∈ (µ3, µ4)).

Example 2 Next we will consider an example of the receiver’s problem with three states.
Let Θ = {0, 1, 2} and A = {a1, a2, . . . , an}, where a1 = 0, an = 2, and ai+1 = ai+2/(n−1) for
i = 1 . . . , n− 1 (i.e. n evenly spaced actions from 0 to 2). The receiver’s (gross) preferences
are ur(a, θ) = −(a− θ)2. Hence the receiver wishes to choose the action which is closest to
her posterior expectation of the state.

Figure 3 shows two simplices. For instance, the lower left corner represents beliefs which
place all weight on state θ = 0, the upper corner represents beliefs which place all weight
on state θ = 1, and the lower right corner represents beliefs which place all weight on state
θ = 2. Beliefs which place equal weight on all three states would be in the center, and beliefs
which place zero weight on θ = 1 would lie along the bottom edge.

For the case of binary actions with n = 2, the receiver will choose a1 whenever Eθ∼µ2 [θ] <

1, and will choose a2 whenever Eθ∼µ2 [θ] > 1. When the receiver can learn, we have the same
basic results as in the previous example: the receiver will want to learn only if her interim
beliefs are relatively uncertain. Figure 3 depicts the range of interim beliefs for which the
receiver will not learn in grey, and the range of interim beliefs for which the receiver will
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(a) n = 2 (b) n = 200

Figure 3: Simplices with non-learning (grey) and learning (white) regions.

learn in white.
The receiver will focus her learning on distinguishing between the extreme states of θ = 0

and θ = 2. Also note that while the receiver’s action at any given posterior µ2 depends only
on her expectation of the state, The receiver’s decision to learn depends on more than just
the interim expectation of the state. Distinguishing between states θ = 0 and θ = 2 is just
as costly as distinguishing between θ = 0 and θ = 1, but it is more valuable to the receiver
to distinguish between θ = 0 and θ = 2. We can see this by looking at Figure 3b, where
the receiver learns only when she is relatively sure that the state is not θ = 1, as additional
information is then more valuable.

4 Characterization of Sender’s Problem

We now revisit the first example from the previous section to see how receiver learning
impacts the sender’s ability to transmit information.

Example 1 Recall that the sender’s preferences are given by us(a) = a and the prior is
µ0 = 1/2. We will first consider the sender-optimal equilibrium if the receiver does not have
the option to learn. If the sender could commit to perfectly reveal the state to the receiver,
then the sender would receive an ex post payoff of 1 when the state is θ = 1 and an ex post
payoff of 2 when the state is 2. If the sender could reveal no information, then the sender’s
ex post payoff would be 0 regardless of the state.
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Figure 4: Sender’s value function with no receiver learning.

Figure 4 shows the sender’s value function vs(µ1) in blue. If the receiver has beliefs
µ < 1/4 when choosing an action, she will choose a = 1. If she has beliefs µ > 3/4 when
choosing an action, she will choose a = 2. Otherwise she chooses a = 0.

Now suppose that the sender were to send messages recommending the receiver to choose
a = 2 using the strategy

Pr{recommend a = 1|θ = 1} = 2/3 Pr{recommend a = 1|θ = 2} = 0

Pr{recommend a = 2|θ = 1} = 1/3 Pr{recommend a = 2|θ = 2} = 1

The receiver’s unique best response to the sender recommending a = 1 is a = 1. But
when the sender recommends a = 2, the receiver will be indifferent between a = 2 and a = 0,
since his posterior beliefs will be µ2 = 3/4.

In order for this to be a cheap talk equilibrium, upon receiving the recommendation to
choose a = 2 the receiver must randomize equally between a = 0 and a = 2. Then the
sender will receive an ex post payoff of 1 regardless of the message that is sent, and will have
no incentive to deviate from the equilibrium. If the receiver were to instead always choose
a = 2 when the sender recommends a = 2, then since the sender has no commitment power
he would have an incentive to lie when the true state is θ = 1. The mixed strategy of the
receiver helps to provide credibility to the sender’s messages.

12



(a) κ = 1.6 (b) κ = 2.25

Figure 5: Sender value functions with receiver learning. Cutoff values correspond to Figure 2.

The dashed red line depicts the quasiconcave envelope of the sender’s value function,
which we will call Vs. This is the point-wise lowest quasiconcave and upper semicontinuous
function that majorizes vs. As shown in Ravid and Lipnowski (2017), the function Vs gives
the sender’s ex ante expected payoff in the sender-optimal equilibrium as a function of the
prior µ0. The quasiconcavity is a result of the sender’s lack of commitment power: every
interim belief in the support of p must yield the sender the same payoff.

Now we consider the case where κ < inf and the receiver can learn. Figure 5 shows the
sender’s value functions for the cases of κ = 1.6 and κ = 2.25. The values of µ1, µ2, µ3

and µ4 come from the cutoff values in Figure 2. As discussed in the previous section, when
κ = 1.6 the receiver will always choose either a = 1 or a = 2. In Figure 5b this results in
vs(µ) = Vs(µ) for all µ ∈ [0, 1], meaning that the sender can no longer persuade the receiver.

However, when learning is more costly with κ = 2.25, there is still room for persuasion.
In Figure 5b we see how the sender’s value function has changed. In the region (µ1, µ2) the
receiver will be learning, with a positive probability of choosing a = 1 or a = 0. Similarly,
for µ1 ∈ (µ3, µ4) the receiver will learn, with a positive probability of choosing a = 2 or
a = 0. This has a similar result to the receiver choosing a mixed strategy in the example
when there was no learning option; the randomization between a = 0 and a = 2 due to
learning can give the sender credibility, allowing for persuasive communication even in the
absence of mixed strategies.
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Figure 6: Sender and Receiver payoffs in sender-optimal equilibrium as a function of the cost of learning κ.

Comparative Statics Figure 6 shows the payoffs to the sender and receiver in the sender-
optimal equilibrium when µ0 = 1/2. Note that there is a cutoff at κ̄ = 1.64. Below this
level the receiver learns for all intermediate beliefs and always choose either a = 1 or a = 2,
and the sender cannot effectively persuade. Above this level the receiver will not learn for
intermediate values of µ1, and when learning does there is a positive probability of choosing
a = 0. This opens up the possibility for the sender to engage in persuasive communication.

Note the receiver’s payoffs are non-monotonic in the cost of learning. The receiver is best
off when κ = 0, because then she can costlessly learn the state and always choose a = θ. For
values of κ just below the cutoff (as in Figures 2a and 5a), the sender is unable to credibly
communicate any information. The receiver will invest in some learning, and choose either
a = 1 or a = 2. But the receiver can be made better off by having κ just above the cutoff,
because then the receiver will have to learn less, and the sender will be able to supplement
the information. This highlights the way in which higher costs of learning can actually be
beneficial to the receiver.

Note that for different priors the sender could be made worse off by receiver learning.
For instance, if κ = 1.6 but µ0 ∈ (0.75, µ2), then in if the receiver could not learn she would
choose a = 2, but with learning she has a positive probability of choosing a = 1.

14



5 Conclusion

We have analyzed strategic communication when the receiver has the option of acquiring
additional information after receiving a signal from the sender. Drawing on methods de-
veloped in the literature on Bayesian persuasion and cheap talk, we have characterized the
problems of the sender and receiver and analyzed them through an example. This exam-
ple has highlighted how the option of the receiver to learn may either help or harm the
sender and receiver. Receiver learning can help to sustain an equilibrium by providing the
sender with more credibility, but it may also mean that the sender cannot communicate any
information if the receiver will just go out and learn the true state anyway.
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